No CrossRef data available.
Article contents
On free subalgebras of varieties
Published online by Cambridge University Press: 22 November 2021
Abstract
We show that some results of L. Makar-Limanov, P. Malcolmson and Z. Reichstein on the existence of free-associative algebras are valid in the more general context of varieties of algebras.
Keywords
MSC classification
Primary:
17A50: Free algebras
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 65 , Issue 1 , February 2022 , pp. 89 - 101
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
Cohn, P.M., Free ideal rings and localization in general rings (Cambridge University Press, 2006).CrossRefGoogle Scholar
Kurosh, A., Non-associative free algebras and free products of algebras, Rec. Math. [Mat. Sbornik] N.S. 20 (1947), 239–262.Google Scholar
Lewin, J., On Schreier varieties of linear algebras, Trans. Amer. Math. Soc. 132 (1968), 553–562.CrossRefGoogle Scholar
Makar-Limanov, L. and Malcolmson, P., Free subalgebras of enveloping fields, Proc. Amer. Math. Soc. 111 (1991), 315–322.CrossRefGoogle Scholar
Mikhalev, A.A., Shpilrain, V. and Yu, J., Combinatorial methods: free groups, polynomials, and free algebras, CMS Books in Mathematics, Volume 19 (Springer-Verlag, New York, 2003).CrossRefGoogle Scholar
Reichstein, Z., On a question of Makar-Limanov, Proc. Amer. Math. Soc. 124 (1996), 17–19.CrossRefGoogle Scholar
Shirshov, A.I., Subalgebras of free Lie algebras, Mat. Sb. (N.S.) 33(75) (1953), 441–452.Google Scholar
Shirshov, A.I., Subalgebras of free commutative and free anticommutative algebras, Mat. Sb. (N.S.) 34(76) (1954), 81–88.Google Scholar
Smoktunowicz, A., Makar-Limanov's conjecture on free subalgebras, Adv. Math. 222 (2009), 2107–2116.CrossRefGoogle Scholar
Witt, E., Die Unterringe der freien Lieschen ring, Math. Z. 64 (1956), 195–216.CrossRefGoogle Scholar
Zhevlakov, K.A., Slin'ko, A.M., Shestakov, I.P. and Shirshov, A.I., Rings that are nearly associative, Pure and Applied Mathematics (Elsevier Science, 1982).Google Scholar