Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:08:52.284Z Has data issue: false hasContentIssue false

On the derivative of a polynomial

Published online by Cambridge University Press:  24 May 2022

Prasanna Kumar*
Affiliation:
Department of Mathematics, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa 403726, India (prasannak@goa.bits-pilani.ac.in)

Abstract

In this paper, we prove the well-known Erdős–Lax inequality [4] in a sharpened form. As a consequence, another widely used inequality due to Ankeny and Rivlin [1] gets sharpened. These results may be useful in various applications that required the Erdős–Lax and the Ankeny–Rivlin inequalities.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankeny, N. C. and Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849852.CrossRefGoogle Scholar
Aziz, A. and Dawood, Q. M., Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (1988), 306313.CrossRefGoogle Scholar
Bernstein, S. N., Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle (Gauthier-Villars, Paris, 1926).Google Scholar
Erd ős, P., On extremal properties of derivatives of polynomials, Ann. Math. 41 (1940), 310313.CrossRefGoogle Scholar
Laguerre, E., Oeuvres Vol. 1, Nouvelles Ann. de Math. 17(2) (1878), 2025.Google Scholar
Lax, P. D., Proof of a conjecture due to Erd ős on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509513.CrossRefGoogle Scholar
Rahman, Q. I. and Schmeisser, G., analytic theory of polynomials, LMS monographs new series, Vol. 26 (Clarendon Press, Oxford, 2002).Google Scholar
Schaeffer, A. C., Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565579.CrossRefGoogle Scholar
Szeg ő, G., Bemerkungen zu einem satz von J.H. Grace etc., Math. Zeitschr. 13 (1922), 2255.Google Scholar