Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:58:38.324Z Has data issue: false hasContentIssue false

On the Stepanov-almost periodic solution of a second-order operator differential equation

Published online by Cambridge University Press:  20 January 2009

Aribindi Satyanarayan Rao
Affiliation:
Département de Mathématiques, Université de Montréal, Montreal, Québec, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose X is a Banach space and J is the interval −∞<t<∞. For 1 ≦ p<∞, a function is said to be Stepanov-bounded or Sp-bounded on J if

(for the definitions of almost periodicity and Sp-almost periodicity, see Amerio-Prouse (1, pp. 3 and 77).

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1975

References

REFERENCES

(1) Amerio, L. and Prouse, G., Almost Periodic Functions and Functional Equations (Van Nostrand Reinhold Company, 1971).Google Scholar