Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:18:28.243Z Has data issue: false hasContentIssue false

Connecting the density structure of molecular clouds with star formation

Published online by Cambridge University Press:  12 September 2016

Jouni Kainulainen*
Affiliation:
Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg email: jtkainul@mpia.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds. This density structure is essentially encapsulated in the probability distribution function of volume densities (ρ-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the ρ-PDF function has remained virtually unconstrained by observations. I describe in this contribution the recent progress in attaining observational constraints for the column density PDFs (N-PDFs) of molecular clouds that function as a proxy of the ρ-PDFs. Specifically, observational works point towards a universal correlation between the shape of the N-PDFs and star formation activity in molecular clouds. The correlation is in place from the scales of a parsec up to the scales of entire galaxies, making it a fundamental, global link between the ISM structure and star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abreu-Vicente, J., Kainulainen, J., Stutz, A., Henning, T., & Beuther, H. 2015, A&A, 581, A74 Google Scholar
Alves de Oliveira, C., Schneider, N., Merín, B., et al. 2014, A&A, 568, A98 Google Scholar
André, P., Men'shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102 Google Scholar
Brunt, C. M., Federrath, C., & Price, D. J. 2010, MNRAS, 405, L56 Google Scholar
Evans, N. J. II, Heiderman, A., & Vutisalchavakul, N. 2014, ApJ, 782, 114 Google Scholar
Federrath, C. & Klessen, R. S. 2013, ApJ, 763, 51 Google Scholar
Federrath, C. & Klessen, R. S. 2012, ApJ, 761, 156 Google Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., et al. 2010, A&A, 512, A81 Google Scholar
Girichidis, P., Konstandin, L., Whitworth, A. P., & Klessen, R. S. 2014, ApJ, 781, 91 Google Scholar
Kainulainen, J., Federrath, C., & Henning, T. 2014, Science, 344, 183 Google Scholar
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35 Google Scholar
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ, 745, 190 Google Scholar
Lombardi, M. 2009, A&A, 493, 735 Google Scholar
Lombardi, M., Alves, J., & Lada, C. J. 2015, A&A, 576, L1 Google Scholar
Molina, F. Z., Glover, S. C. O., Federrath, C., & Klessen, R. S. 2012, MNRAS, 423, 2680 CrossRefGoogle Scholar
Padoan, P., Federrath, C., Chabrier, G., et al. 2014, in: Beuther, H., Klessen, R., Dullemond, C., Henning, T. (eds.), Protostars and Planets VI, p. 77Google Scholar
Sadavoy, S. 2013, PhD Thesis, University of Victoria.Google Scholar
Sadavoy, S. I., Di Francesco, J., André, P., et al. 2014, ApJL, 787, L18 Google Scholar
Schneider, N., André, P., Könyves, V., et al. 2013, ApjL, 766, L17 Google Scholar
Schneider, N., Csengeri, T., Klessen, R. S., et al. 2015, A&A, 578, A29 Google Scholar
Stutz, A. M. & Kainulainen, J. 2015, A&A, 577, L6 Google Scholar
Vázquez-Semadeni, E. 1994, ApJ, 423, 681 Google Scholar
Ward, R. L., Wadsley, J., & Sills, A. 2014, MNRAS, 445, 1575 CrossRefGoogle Scholar