No CrossRef data available.
Published online by Cambridge University Press: 12 September 2016
We investigate the sputtering and thermal desorption of various grain-surface species in one dimensional steady-state shock models motivated by the recent detection of SO emission towards class 0-I protostars. We find that the thermal desorption is more efficient at higher densities, while the efficiency of sputtering is independent of density. SO is completely desorbed, if the accretion velocity is higher than ~ 2 km s−1 and ~ 4 km s−1, with the pre-shock density of 109 cm−3 and 108 cm−3, respectively. The column density of warm post-shock gas is found to be N ~ 1021 cm−2. If the abundance of SO ice is ~ 10−7 relative to hydrogen in the pre-shock material, SO emission around L1527 can be explained by the sublimation at the accretion shock.