Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T12:44:55.175Z Has data issue: false hasContentIssue false

Optical variability of quasars: a damped random walk

Published online by Cambridge University Press:  25 July 2014

Željko Ivezić
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580, USA email: ivezic@astro.washington.edu
Chelsea MacLeod
Affiliation:
Department of Physics, U. S. Naval Academy, 572c Holloway Rd, Annapolis, MD 21402, USA email: macleod@usna.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A damped random walk is a stochastic process, defined by an exponential covariance matrix that behaves as a random walk for short time scales and asymptotically achieves a finite variability amplitude at long time scales. Over the last few years, it has been demonstrated, mostly but not exclusively using SDSS data, that a damped random walk model provides a satisfactory statistical description of observed quasar variability in the optical wavelength range, for rest-frame timescales from 5 days to 2000 days. The best-fit characteristic timescale and asymptotic variability amplitude scale with the luminosity, black hole mass, and rest wavelength, and appear independent of redshift. In addition to providing insights into the physics of quasar variability, the best-fit model parameters can be used to efficiently separate quasars from stars in imaging surveys with adequate long-term multi-epoch data, such as expected from LSST.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Butler, N. R. & Bloom, J. S. 2011, AJ, 141, 93CrossRefGoogle Scholar
Dexter, J. & Agol, E. 2011, ApJ, 727, 24CrossRefGoogle Scholar
Hawkins, M. R. S. & Veron, P. 1995, MNRAS, 275, 1102CrossRefGoogle Scholar
Ivezić, Ž., Lupton, R. H., Jurić, M., et al. 2004, ArXiv:astro-ph/0404487Google Scholar
Ivezić, Ž., Tyson, J. A., Acosta, E., et al. 2008, ArXiv:0805.2366Google Scholar
Kelly, B. C., Bechtold, J. & Siemiginowska, A. 2009, ApJ, 698, 895Google Scholar
Kozłowski, S., Kochanek, C. S., Udalski, A., et al. 2010, ApJ, 708, 927Google Scholar
MacLeod, C. L., Ivezić, Ž., de Vries, W., et al. 2008, AIP Conf. Series, 1082, 282Google Scholar
MacLeod, C. L., Ivezić, Ž., Kochanek, C. S., et al. 2010, ApJ, 721, 1014Google Scholar
MacLeod, C. L., Brooks, K., Ivezić, Ž., et al. 2011, ApJ, 728, 26Google Scholar
MacLeod, C. L., Ivezić, Ž., Sesar, B., et al. 2012, ApJ, 753, 106CrossRefGoogle Scholar
Mushotzky, R. F., Edelson, R., Baumgartner, W., & Gandhi, P. 2011, ApJ, 743, 12Google Scholar
Sesar, B., Ivezić, Ž., Lupton, R. H., et al. 2007, AJ, 134, 2236CrossRefGoogle Scholar
Schmidt, K. B., Rix, H.-W., Shields, J. C., et al. 2012, ApJ, 744, 147Google Scholar
Trevese, D., Kron, R. G. & Bunone, A. 2001, ApJ, 551, 103Google Scholar
Vanden Berk, D. E., Wilhite, B. C., Kron, R. G., et al. 2004, ApJ, 601, 692Google Scholar
Zu, Y., Kochanek, C. S., Kozłowski, S., & Udalski, A. 2013, ApJ, 765, 106CrossRefGoogle Scholar