Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T01:46:41.162Z Has data issue: false hasContentIssue false

Properties of interstellar filaments as derived from Herschel, Planck, and molecular line observations

Published online by Cambridge University Press:  12 September 2016

Doris Arzoumanian
Affiliation:
Institut d'Astrophysique Spatiale (IAS), CNRS (UMR 8617), Université Paris-Sud 11, Bâtiment 121, 91400 Orsay, France
Philippe André
Affiliation:
Laboratoire AIM, CEA/DSM–CNRS–Université Paris Diderot, IRFU/Service d'Astrophysique, C.E.A. Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
François Boulanger
Affiliation:
Institut d'Astrophysique Spatiale (IAS), CNRS (UMR 8617), Université Paris-Sud 11, Bâtiment 121, 91400 Orsay, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent Herschel and Planck observations of submillimeter dust emission revealed the omnipresence of filamentary structures in the interstellar medium (ISM). The ubiquity of filaments in quiescent clouds as well as in star-forming regions indicates that the formation of filamentary structures is a natural product of the physics at play in the magnetized turbulent cold ISM. An analysis of more than 270 filaments observed with Herschel in 8 regions of the Gould Belt, shows that interstellar filaments are characterized by a narrow distribution of central width sharply peaked at ~0.1 pc, while they span a wide column density range. Molecular line observations of a sample of these filaments show evidence of an increase in the velocity dispersion of dense filaments with column density, suggesting an evolution in mass per unit length due to accretion of surrounding material onto these star-forming filaments. The analyses of Planck dust polarization observations show that both the mean magnetic field and its fluctuations along the filaments are different from those of their surrounding clouds. This points to a coupling between the matter and the $\vec{B}$-field in the filament formation process. These observational results, derived from dust and gas tracers in total and polarized intensity, set strong constraints on our understanding of the formation and evolution of filaments in the ISM. They provide important clues on the initial conditions of the star formation process along interstellar filaments.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abergel, A., Boulanger, F., Mizuno, A., & Fukui, Y. 1994, ApJ, 423, L59 CrossRefGoogle Scholar
André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and Planets VI, p. 27Google Scholar
André, P., Men'shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102 Google Scholar
Arzoumanian, D., André, P., Didelon, P., et al. 2011, A&A, 529, L6 Google Scholar
Arzoumanian, D., André, P., Peretto, N., & Könyves, V. 2013, A&A, 553, A119 Google Scholar
Cox, N., Arzoumanian, D., André, P., et al. 2015, A&A submittedGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M. 2010, A&A 512 A81 Google Scholar
Fernández-López, M., Arce, H. G., Looney, L., et al. 2014, ApJL, 790, L19 Google Scholar
Fiege, J. D. & Pudritz, R. E. 2000, MNRAS, 311, 85 CrossRefGoogle Scholar
Goldsmith, P. F., Heyer, M., Narayanan, G., et al. 2008, ApJ, 680, 428 Google Scholar
Heitsch, F. 2013, ApJ, 769, 115 Google Scholar
Hennebelle, P. & André, P. 2013, A&A, 560, A68 Google Scholar
Hennebelle, P., Banerjee, R., Vázquez-Semadeni, E., Klessen, R. S., & Audit, E. 2008, A&A, 486, L43 Google Scholar
Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ, 699, 1092 CrossRefGoogle Scholar
Hildebrand, R. H. 1983, QJRAS, 24, 267 Google Scholar
Hill, T., Andre, P., Arzoumanian, D., et al. 2012, A&A, 548, L6 Google Scholar
Inutsuka, S. & Miyama, S. M. 1997, ApJ, 480, 681 CrossRefGoogle Scholar
Jones, T. J., Bagley, M., Krejny, M., Andersson, B.-G., & Bastien, P. 2015, AJ, 149, 31 CrossRefGoogle Scholar
Kirk, H., Myers, P. C., Bourke, T. L., et al. 2013, ApJ, 766, 115 CrossRefGoogle Scholar
Koch, E. W. & Rosolowsky, E. W. 2015, MNRAS, 452, 3435 CrossRefGoogle Scholar
Könyves, V., André, P., Men'shchikov, A., et al. 2015, A&A in press [ArXiv:1507.05926]Google Scholar
Lee, H. M. & Draine, B. T. 1985, ApJ, 290, 211 CrossRefGoogle Scholar
Lee, K. I., Fernandez-Lopez, M., Storm, S., et al. 2014, ArXiv e-printsGoogle Scholar
Mac Low, M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125 CrossRefGoogle Scholar
Men'shchikov, A., André, P., Didelon, P., et al. 2010, A&A 518 L103 Google Scholar
Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100 Google Scholar
Myers, P. C. & Goodman, A. A. 1988, ApJ, 326, L27 Google Scholar
Ostriker, J. 1964, ApJ, 140, 1056 CrossRefGoogle Scholar
Palmeirim, P., André, P., Kirk, J., et al. 2013, A&A, 550, A38 Google Scholar
Pineda, J. E., Goodman, A. A., Arce, H. G., et al. 2011, ApJl, 739, L2 CrossRefGoogle Scholar
Planck Collaboration Int. XIX. 2015, A&A, in press [ArXiv:1405.0871]Google Scholar
Planck Collaboration Int. XXXII. 2014, A&A, in press [ArXiv:1409.6728]Google Scholar
Planck Collaboration Int. XXXIII. 2014, A&A, in press [ArXiv:1411.2271]Google Scholar
Planck Collaboration Int. XXXV. 2015, A&A, in press [ArXiv:1502.04123]Google Scholar
Roy, A., André, P., Arzoumanian, D., et al. 2015, A&A, in press [ArXiv:1509.01819]Google Scholar
Schneider, S. & Elmegreen, B. G. 1979, ApJS, 41, 87 CrossRefGoogle Scholar
Sousbie, T. 2011, MNRAS, 414, 350 CrossRefGoogle Scholar
Whittet, D. C. B., Hough, J. H., Lazarian, A., & Hoang, T. 2008, ApJ, 674, 304 CrossRefGoogle Scholar
Ysard, N., Abergel, A., Ristorcelli, I., et al. 2013, A&A, 559, A133 Google Scholar