Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:56:48.263Z Has data issue: false hasContentIssue false

Toward improving the accuracy of Cepheid distances through parallax of pulsation

Published online by Cambridge University Press:  26 February 2013

Antoine Mérand
Affiliation:
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Santiago 19, Chile email: amerand@eso.org
Pierre Kervella
Affiliation:
LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon, France
Jason P. Aufdenberg
Affiliation:
Embry–Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114, USA
Alexandre Gallenne
Affiliation:
Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Improvement of the calibration of the Cepheid period–luminosity relation (Leavitt's Law) is one of the main challenges to improve the accuracy of the Hubble constant, H0. Many parallax-of-pulsation methods are promising but have not yet delivered sufficiently accurate distances: observational biases, such as the projection factor, still dominate. We propose a global parallax-of-pulsation method, combining all observables (photometry, spectroscopy, and interferometry), to (i) reduce statistical errors, (ii) use the redundancy among observables to validate our approach, and (iii) achieve 2% accuracy for individual Cepheid distances.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Baade, W. 1926, Astron. Nachr., 228, 359Google Scholar
Berdnikov, L. N. & Turner, D. G. 2001, ApJS, 137, 209CrossRefGoogle Scholar
Bersier, D. 2002, ApJS, 140, 465Google Scholar
Burki, G., Mayor, M., & Benz, W. 1982, A&A, 109, 258Google Scholar
Davis, J., Jacob, A. P., Robertson, J. G., et al. 2009, MNRAS, 394, 1620Google Scholar
Fouqué, P. & Gieren, W. P. 1997, A&A, 320, 799Google Scholar
Gray, D. F. & Stevenson, K. B. 2007, PASP, 119, 398CrossRefGoogle Scholar
Lane, B. F., Kuchner, M. J., Boden, A. F., et al. 2000, Nature, 407, 485Google Scholar
Laney, C. D. & Stoble, R. S. 1992, A&AS, 93, 93Google Scholar
Lindemann, F. A. 1918, MNRAS, 78, 639CrossRefGoogle Scholar
Kervella, P., Nardetto, N., Bersier, D., et al. 2004, A&A, 416, 941Google Scholar
Kervella, P., Bersier, D., Mourard, D., et al. 2004, A&A, 428, 587Google Scholar
Mérand, A., Kervella, P., Coudé du Foresto, V., et al. 2005, A&A, 438, L9Google Scholar
Mérand, A., Kervella, P., Pribulla, T., et al. 2011, A&A, 532, A50Google Scholar
Taylor, M. M., Booth, A. J., Booth, A. J., & Cottrell, P. L. 1997, MNRAS, 292, 662CrossRefGoogle Scholar
Wesselink, A. J. 1946, Bull. Astron. Inst. Neth., 10, 88Google Scholar