Published online by Cambridge University Press: 28 February 2007
Fe seems to be the only nutrient deficiency that industrialized and low-income countries have in common. Thus, Fe is one of the most critical nutrition requirements to be met in most diets in human subjects. Fe deficiency is caused not only by too low an intake, but is also the result of low bioavailability, as well as an increased Fe requirement due to physiological variables or clinical problems which are not met by an increased dietary intake of Fe. In low-income countries poor dietary quality rather than Fe intake seems to be the key determinant of impaired Fe status. Sometimes the Fe intake even exceeds that in populations of industrialized countries. The interaction of all enhancers (e.g. ascorbic acid and meat), as well as inhibitors (such as bran, polyphenols, egg yolk, soyabean products, Ca, Ca3(PO4)2 and phytic acid (or phytate)) is what determines the bioavailability of non-haem-Fe in the meal. Dietary composition seems to be particularly important when Fe reserves are low, or in the presence of Fe deficiency. Furthermore, the development of anaemia as a result of Fe deficiency, secondary to Fe-stress situations, is dependent on the Fe balance in the host. With respect to the dietary intake of Fe, other products in the food consumed as well as previous treatment of the product (e.g. heat treatment and processing) may also influence bioavailability. Despite all efforts to counteract Fe deficiency it still represents one of the dominant problems in the micronutrient sphere. It is apparent that there is no simple solution to the problem, and the fact that Fe deficiency still occurs in affluent societies consuming a mixed diet speaks for itself; a more holistic view of total dietary composition and the role of enhancers and inhibitors is needed.