Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T19:35:56.947Z Has data issue: false hasContentIssue false

Evaluation of the impact of food technology on the allergenicity of cow’s milk proteins

Published online by Cambridge University Press:  28 February 2007

M. Heyman*
Affiliation:
INSERM E9925, Faculté de médecine Necker-Enfants malades, 156 rue de Vaugirard, 75730 Paris, France
*
Corresponding Author: Dr Martine Heyman, fax +33 1 40 61 56 38, email heyman@necker.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The quantitative evaluation of the allergenicity of food proteins and the clinical tolerance towards antigens are problems the food industry and the clinicians have to face. The allergenicity of a protein depends on multiple factors, including the stability to digestion and the interaction with the intestinal environment. In addition to the possible reduction in allergenicity by technological treatments such as heat and enzymic hydrolysis, the complex interactions existing between the antigens, the intestinal epithelium and the underlying immune system, as well as the individual susceptibility to the sensitizing epitopes, have to be taken into account. Indeed, the intestinal cells are able to take up and process proteins, and possibly to present them directly to mucosal lymphocytes. On the other hand, pathophysiological conditions can modify the interactions between food antigens and the immune system. A large number of methods has been developed to assess the residual antigenicity of food proteins, based on the various immune responses leading to intestinal or extradigestive pathologies. Thus, the difficulty in measuring the residual allergenicity of hypoallergenic formulas is partly due to the physiology of the gastrointestinal tract, since an intricate network of interactions between enterocytes and immune cells governs the development of the immune response to food antigens. RésuméL’évaluation de l’allergénicité des aliments et leur bonne tolérance clinique est une question touchant à la fois les industriels de l’agro-alimentaire et les cliniciens. L’allergénicité d’une protéine dépend de multiples facteurs parmi lesquels la résistance à la digestion, les interactions avec le tractus digestif et les facteurs environnementaux. L’allergénicité d’un produit alimentaire peut être modifiée non seulement par les traitements technologiques industriels, mais aussi par le tractus gastrointestinal. La susceptibilité individuelle aux epitopes peptidiques formés est également un facteur primordial. En effet, les interactions complexes existant entre les antigènes, l’épithelium intestinal et le système immunitaire muqueux peuvent conduirent à des réponses immunitaires différentes selon les individus. De nombreuses méthodes existent pour mesurer l’antigénicité résiduelle des aliments, basées sur la nature des différentes réactions immunitaires anormales conduisant à une pathologie intestinale ou extradigestive. La difficulté de mesurer l’allergénicité résiduelle de formules hypoallergéniques repose donc sur les relations complexes entre les antigènes alimentaires, l’épithelium intestinal et le système immunitaire muqueux.

Type
Symposium on ‘Food technology: can it alter the functionality of nutrients’
Copyright
Copyright © The Nutrition Society 1999

References

Anderson, KJ, McLaughlan, P, Devey, ME & Coombs, RR (1979) Anaphylactic sensitivity of guinea-pigs drinking different preparations of cows’ milk and infant formulae. Clinical and Experimental Immunology 35, 454461.Google ScholarPubMed
Astwood, JD Leach, JN & Fuchs, RL (1998) Stability of food allergens to digestion in vitro. Nature Biotechnology 14, 12691273.Google Scholar
Benlounes, N, Dupont, C, Candalh, C, Blaton, MA, Darmon, N, Desjeux, JF & Heyman, M (1996) The threshold for immune cell reactivity to milk antigens decreases in cow’s milk allergy with intestinal symptoms. Journal of Allergy and Clinical Immunology 98, 781789.CrossRefGoogle ScholarPubMed
Businco, L, Lucenti, P, Arcese, G, Ziruolo, G & Cantani, A (1994) Immunogenicity of a so-called hypoallergenic formula in at-risk babies: two case reports. Clinical and Experimental Allergy 24, 4245.Google Scholar
Coombs, RRA & Gell, PGH (1968) Clinical Aspects of Immunology. Oxford: Blackwell Scientific.Google Scholar
de Boissieu, D, Matarazzo, P & Dupont, C (1997) Allergy to extensively hydrolyzed cow milk proteins in infants: identification and treatment with an amino acid-based formula. Journal of Pediatrics 131, 744747.Google Scholar
Eigenmann, PA, Belli, DC, Lündi, F, Kahn, JM & Polla, BS (1995) In vitro lymphocyte proliferation with milk and a casein-whey protein hydrolyzed formula in children with cow’s milk allergy. Journal of Allergy and Clinical Immunology 96, 549557.CrossRefGoogle Scholar
Fargeas, MJ, Theodorou, V, More, J, Wal, JM, Fioramonti, J & Bueno, L (1995) Boosted systemic immune and local responsiveness after intestinal inflammation in orally sensitized guinea pigs. Gastroenterology 109, 5362.CrossRefGoogle ScholarPubMed
Fritsché, R & Bonzon, M (1990) Determination of cow milk formula allergenicity in the rat model by in vitro mast cell triggering and in vivo IgE induction. International Archives of Allergy and Applied Immunology 93, 289293.CrossRefGoogle ScholarPubMed
Heyman, M, Andriantsoa, M, Crain-Denoyelle, AM & Desjeux, JF (1990) Effect of oral or parenteral sensitization to cow’s milk on mucosal permeability in guinea pigs. International Archives of Allergy and Applied Immunology 92, 242246.Google Scholar
Heyman, M, Benlounes, N, Candalh, C & Dupont, C (1997) Evaluation of hypoallergenicity of various infant formula using TNF α released from mononuclear cells of cow’s milk allergic children. Journal of Pediatric Gastroenterology and Nutrition 24, 468 Abstr.Google Scholar
Heyman, M, Corthier, G, Lucas, F, Meslin, JC & Desjeux, JF (1989) Evolution of the caecal epithelial barrier during Clostridium difficile infection in the mouse. Gut 30, 10871093.CrossRefGoogle ScholarPubMed
Heyman, M, Darmon, N, Dupont, C, Dugas, B, Hirribaren, A, Blaton, MA & Desjeux, JF (1994) Mononuclear cells from infants allergic to cow’s milk secrete tumor necrosis factor alpha, altering intestinal function. Gastroenterology 106, 15141523.Google Scholar
Heyman, M & Desjeux, J (1997) Antigen handling by intestinal epithelial cells. In Antigen Presentation by Intestinal Epithelial Cells, pp. 116 [Kaiserlian, D, editor]. Heidelberg: Springer Verlag.Google Scholar
Heyman, M, Ducroc, R, Desjeux, JF & Morgat, JL (1982) Horseradish peroxidase transport across adult rabbit jejunum in vitro. American Journal of Physiology 242, G558G564.Google Scholar
Höst, A & Samuelsson, EG (1988) Allergic reactions to raw, pasteurized, and homogenized/pasteurized cow milk: a comparison. A double-blind placebo-controlled study in milk allergic children. Allergy 43, 113118.CrossRefGoogle ScholarPubMed
Hudson, MJ (1995) Product development horizons - a view from industry. European Journal of Clinical Nutrition 49, Suppl. 1, S64S70.Google ScholarPubMed
Isolauri, E & Turjanmaa, K (1996) Combined skin prick and patch testing enhances identification of food allergy in infants with atopic dermatitis. Journal of Allergy and Clinical Immunology 97, 915.CrossRefGoogle ScholarPubMed
Ju, HR, Okumiya, M, Nishizono, S, Ki, M, Sugano, M & Imaizumi, K (1997) Increase in degranulation of mucosal mast cells in rats sensitized with milk whey protein hydrolysates compared with native proteins. Food Chemistry and Toxicology 35, 663668.Google Scholar
Kitagawa, S, Zhang, S, Harari, Y & Castro, GA (1995) Relative allergenicity of cow’s milk and cow’s milk-based formulas in an animal model. American Journal of Medical Science 310, 183187.CrossRefGoogle ScholarPubMed
Madara, JL (1990) Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. Journal of Membrane Biology 116, 177184.Google Scholar
Mahé, S, Messing, B, Thuillier, F & Tomé, D (1991) Digestion of bovine milk proteins in patients with a high jejunostomy. American Journal of Clinical Nutrition 54, 534538.CrossRefGoogle ScholarPubMed
Oldaeus, G, Bjorksten, B, Einarsson, R & Kjellman, N (1991) Antigenicity and allergenicity of cow milk hydrolysates intended for infant feeding. Pediatric Allergy and Immunology 4, 156164.CrossRefGoogle Scholar
Pahud, JJ, Monti, JC & Jost, R (1985) Allergenicity of whey protein: its modification by tryptic in vitro hydrolysis of the protein. Journal of Pediatric Gastroenterology and Nutrition 4, 408413.CrossRefGoogle ScholarPubMed
Pahud, JJ & Schwarz, K (1985) Oral sensitization to food proteins in animal models, a basis for the development of hypoallergenic infant formula. Production, Regulation and Analysis of Infant Formula. Proceedings of the Topical Conference, Virginia Beach, 1985, pp. 264271. Arlington, VA: Association of Official Analytical Chemists.Google Scholar
Restani, P, Plebani, A, Velona, T, Cavagni, G, Ugazio, AG, Poiesi, C, Muraro, A & Galli, CL (1996) Use of immunoblotting and monoclonal antibodies to evaluate the residual antigenic activity of milk protein hydrolysed formulae. Clinical and Experimental Allergy 26, 11821187.Google Scholar
Rodriguez, P, Heyman, M, Candalh, C, Blaton, MA & Bouchaud, C (1995) Tumour necrosis factor-alpha induces morphological and functional alterations of intestinal HT29 cl. 19A cell monolayers. Cytokine 7, 441448.Google Scholar
Sollid, LM, Markussen, G, Ek, J, Gjerde, H, Vartdal, F & Thorsby, E (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. Journal of Experimental Medicine 169, 345350.CrossRefGoogle ScholarPubMed
Soloway, P, Fish, S, Passmore, H, Gefter, M, Coffee, R & Manser, T (1991) Regulation of the immune response to peptide antigens: differential induction of immediate-type hypersensitivity and T cell proliferation due to changes in either peptide structure or major histocompatibility complex haplotype. Journal of Experimental Medicine 174, 847858.CrossRefGoogle ScholarPubMed
Terpend, K, Boisgerault, F, Blaton, MA, Desjeux, JF & Heyman, M (1998) Protein transport and processing by human HT29–19A intestinal cells: effect of interferon gamma. Gut 42, 538545.Google Scholar
Troncone, R, Caputo, N, Zibella, A, Russo, R, Rossi, M, Gianfrani, C, Stern, M & Wieser, H (1996) Defective ‘gut processing’ of gliadin in mice with graft-versus-host enteropathy. International Archives of Allergy and Applied Immunology 109, 4449.Google Scholar
van Beresteijn, EC, Meijer, RJ & Schmidt, DG (1995) Residual antigenicity of hypoallergenic infant formulas and the occurrence of milk-specific IgE antibodies in patients with clinical allergy. Journal of Allergy and Clinical Immunology 96, 365374.Google Scholar
Wahn, U, Wahl, R & Rugo, E (1992) Comparison of the residual allergenic activity of six different hydrolyzed protein formulas. Journal of Pediatrics 121, S80S84.CrossRefGoogle ScholarPubMed
Weiner, HL (1994) Oral tolerance. Proceedings of the National Academy of Sciences USA 91, 1076210765.CrossRefGoogle ScholarPubMed