Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T08:19:08.842Z Has data issue: false hasContentIssue false

Fatty acid metabolism in domestic cats (Felis catus) and cheetahs (Acinonyx jubatas)

Published online by Cambridge University Press:  28 February 2007

J. E. Bauer
Affiliation:
Comparative Nutrition Research Laboratory, Department of Small Animal Medicine and Surgery, Texas A & M University, College Station, Texas 77843-4474, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrition of wild and captive wild animals’ Plenary Lecture
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Albert, D. H. & Coniglio, J. G. (1977). Metabolism of eicosan-11,14-dienoic acid in rat testes. Evidence for delta 8-desaturase activity. Biochimica et Biophysica Acta 489, 390396.Google Scholar
Association of American Feed Control Officials, Inc. (1997). Official Publication – Association of American Feed Control Officials, Inc. pp. 141142. Atlanta: AAFCO, Inc.Google Scholar
Backeus, K. A., Hoover, J. P., Bauer, J. E., Barrie, M. T., McCann, J., Citino, S. & Wallace, R. (1997 a). Serum lipoproteins, thyroid hormones and resting cortisols in normal Cheetahs (Acinonyx jubatas). Journal of Zoologic and Wildlife Medicine (In the Press).Google Scholar
Backeus, K. A., Hoover, J. P., Bauer, J. E., Campbell, G. A. & Barrie, M. T. (1997 b). Hyperlipidemia in four related male Cheetahs. Journal of Zoologic and Wildlife Medicine (In the Press).Google Scholar
Barbiers, R. B., Vosburgh, L. M., Ku, P. K. & Ullrey, D. E. (1982). Digestive efficiencies and maintenance energy requirements of captive wild felidae: cougar (Felis concolor); leopard (Panthera pardus); lion (Panthera leo) and tiger (Panthera tigris). Journal of Zoological Animal Medicine 13, 3237.CrossRefGoogle Scholar
Bauer, J. E. (1991). Serum lipoprotein alterations of rabbits fed high fat soy protein-dextrose diets. Nutrition Research 11, 771782.Google Scholar
Bauer, J. E. (1992). Diet-induced alterations of lipoprotein metabolism. Journal of the American Veterinary Medical Association 201, 16911694.Google Scholar
Bauer, J. E., Backeus, K., Dunbar, B. L., Hoover, J. P., Barrie, M. T., Citino, S. & Wallace, R. (1996). Serum lipid fatty acids in captive cheetahs: evidence of n-6 and n-3 chain elongation and Δ-5 desaturation. Proceedings of 14th Annual American College of Veterinary Internal Medicine FORUM, p. 752. Lakeland, CO: American College of Veterinary Internal Medicine.Google Scholar
Bauer, J. E., McAlister, K. G., Rawlings, J. M. & Markwell, P. (1997). Molecular species of cholesteryl esters formed via plasma lecithin: cholesterol acyltransferase in fish oil supplemented dogs. Nutrition Research 17, 861872.Google Scholar
Burr, G. O. & Burr, M. M. (1929). A new deficiency disease produced by the rigid exclusion of fat from the diet. Journal of Biological Chemistry 82, 345367.CrossRefGoogle Scholar
Cook, H. W. (1991). Fatty acid desaturation and chain elongation in eucaryotes. In Biochemistry of Lipid, Lipoproteins and Membranes, pp. 141169 [Vance, D. E. and Vance, J., editors]. Amsterdam: Elsevier Science.Google Scholar
Davidson, B. C., Cantrill, R. C. & Varaday, D. (1986 a). The reversal of essential fatty acid deficiency symptoms in the cheetah. South African Journal of Zoology 21, 161164.Google Scholar
Davidson, B. C., Morsbach, D. & Cantrill, R. C. (1986 b). The fatty acid composition of the liver and brain of southern African cheetahs. Progress in Lipid Research 25, 9799.Google Scholar
Desci, T., Molnar, D. & Koletzko, B. (1997). Long-chain polyunsaturated fatty acids in plasma lipids of obese children. Lipids 31, 305311.Google Scholar
Frankel, T. L. & Rivers, J. P. W. (1978). The nutritional and metabolic impact of γ-linolenic acid on cats deprived of animal lipid. British Journal of Nutrition 39, 227231.Google Scholar
Hassam, A. G., Rivers, J. P. W. & Crawford, M. A. (1977). The failure of the cat to desaturate linoleic acid: Its nutritional implications. Nutrition and Metabolism 21, 321328.Google Scholar
Hayes, K. C., Carey, R. E. & Schmidt, S. Y. (1975). Retinal degeneration associated with taurine deficiency in the cat. Science 188, 949951.Google Scholar
Holman, R. T. & Mohrauer, H. (1963). A hypothesis involving competitive inhibitions in the metabolism of polyunsaturated fatty acids. Acta Chemica Scandinavica 17, 55405590.Google Scholar
Hwang, D. H. & Carroll, A. E. (1980). Decreased formation of prostaglandins derived from arachidonic acid by dietary linolenate in rats. American Journal of Clinical Nutrition 33, 590597.Google Scholar
Kingdon, J. (1977). East African Mammals: An Atlas of Evolution in Africa, vol. 3(A), pp. 397413. New York: Academic Press.Google Scholar
MacDonald, M. L., Anderson, B. C., Rogers, Q. R., Buffington, C. A. & Morris, J. G. (1983 a). Essential fatty acid requirements of cats: Pathology of essential fatty acid deficiency. American Journal of Veterinary Research 45, 13101317.Google Scholar
Macdonald, M. L., Rogers, Q. R. & Morris, J. G. (1983 b). Role of linoleate as an essential fatty acid for the cat independent of arachidonate synthesis. Journal of Nutrition 113, 14221433.CrossRefGoogle ScholarPubMed
MacDonald, M. L., Rogers, Q. R. & Morris, J. G. (1984 a). Nutrition of the domestic cat, a mammalian carnivore. Annual Reviews of Nutrition 4, 521562.Google Scholar
MacDonald, M. L., Rogers, Q. R., Morris, J. G. & Cupps, P. T. (1984 b). Effects of linoleate and arachidonate deficiencies on reproduction and spermatogenesis in the cat. Journal of Nutrition 114, 719726.Google Scholar
Mclean, J. G. & Monger, E. A. (1989). Factors determining the essential fatty acid requirements of the cat. In Nutrition of the Dog and Cat. Waltham Symposium no. 7, pp. 329342 [Burger, I. H. and Rivers, J. P. W., editors]. Cambridge: Cambridge University Press.Google Scholar
Menotti-Raymond, M.& O'Brien, S. J. (1993). Dating the genetic bottleneck of the African cheetah. Proceedings of the National Academy of Sciences USA 90, 31723176.CrossRefGoogle ScholarPubMed
Mohrauer, H. & Holman, R. T. (1963). The effects of dose level of essential fatty acids upon the fatty acid composition of the rat liver. Jounal of Lipid Research 4, 151159.Google Scholar
Monger, E. A. (1986). Polyunsaturated fatty acid metabolism in the cat. PhD Thesis, University of Melbourne, Australia.Google Scholar
Munson, L. (1993). Diseases in captive cheetahs: results of the Cheetah SSP Pathology Survey 1988–1992. Zoologic Biology 12, 105124.Google Scholar
Myers, N. (1974). Status of the leopard and cheetah in Africa. In The World's Cats. vol. 3, Proceedings of Third International Symposium on the World's Cats, 1974, pp. 5369 [Eaton, R. L., editor]. Seattle, WA: Department of Zoology, University of Washington.Google Scholar
Nakazawa, I., Mead, J. F. & Yonemoto, R. H. (1976). In vitro activity of the fatty acyl desaturases of human cancerous and noncancerous tissues. Lipids 11, 7982.Google Scholar
O'Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C. A., Meltzer, D., Colly, L., Everman, J. F., Bush, M. & Wildt, D. E. (1985). Genetic basis for species vulnerability in the cheetah. Science 227, 14281434.Google Scholar
O'Brien, S. J. & Wildt, D. E. (1983). The cheetah is depauperate in genetic variance. Science 221, 459462.Google Scholar
Pawlowsky, R., Barnes, A. & Salem, N. Jr (1994). Essential fatty acid metabolism in the feline: relationship between liver and brain production of long chain polyunsaturated fatty acids. Journal of Lipid Research 34, 20322040.Google Scholar
Rivers, J. P. W. (1982). Essential fatty acids in cats. Journal of Small Animal Practice 23, 563576.Google Scholar
Rivers, J. P. W. & Frankel, T. L. (1980). Fat in the diet of dogs and cats. In Nutrition of the Dog and Cat, pp. 6799 [Anderson, R. S., editor]. Oxford: Pergamon Press.Google Scholar
Rivers, J. P. W. & Frankel, T. L. (1981). The production of 5,8,11-eicosatrienoic acid (20:3n-9) in the essential fatty acid deficient cat. Proceedings of the Nutrition Society 40, 117A.Google Scholar
Rivers, J. P. W., Hassam, A. G., Crawford, M. A. & Brambell, M. R. (1976 a). The absence of Δ-6 desaturase activity in the cat. Proceedings of the Nutrition Society 35, 69.Google Scholar
Rivers, I. P. W., Sinclair, A. J. & Crawford, M. A. (1975). Inability of the cat to desaturate essential fatty acids. Nature 258, 171173.CrossRefGoogle ScholarPubMed
Rivers, J. P. W., Sinclair, A. J., Moore, D. P. & Crawford, M. A. (1976 b). The abnormal metabolism of essential fatty acids in the cat. Proceedings of the Nutrition Society 35, 68A..Google Scholar
Scott, P. P. (1968). The special features of nutrition of cats with observations on wild felidae nutrition in the London Zoo. Symposium of the Zoological Society of London 21, 2136.Google Scholar
Sinclair, A. J. (1994). John Rivers (1945–1989): His contribution to research on polyunsaturated fatty acids in cats. Journal of Nutrition 124, 2513S2519S.CrossRefGoogle Scholar
Sinclair, A. J., McLean, J. G. & Monger, E. A. (1979). Metabolism of linoleic acid in the cat. Lipids 14, 932936.CrossRefGoogle ScholarPubMed
Sinclair, A. J., Slattery, W.J., McLean, J. G. & Monger, E. A. (1981). Essential fatty acid deficiency and evidence for arachidonate synthesis in the cat. British Journal of Nutrition 46, 9396.Google Scholar
Stephan, Z. F. & Hayes, K. C. (1978). Vitamin E deficiency and essential fatty acid (EFA) status of cats. Federation Proceedings 37, 258.Google Scholar
Voss, A., Reinhard, M., Sankarappa, S. & Sprecher, H. (1991). The metabolism of 7,10,13,16,19 docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of 4-desaturase. Journal of Biological Chemistry 266, 1999520000.Google Scholar