Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T08:31:16.644Z Has data issue: false hasContentIssue false

Hepatic fuel selection

Published online by Cambridge University Press:  28 February 2007

Manfred J. Müller
Affiliation:
Max von Pettenkofer-Institut, Abteilung Ernährungsmedizin, Postfach 330013, D 14191 Berlin, Germany
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Abumrad, N. N., Cherrington, A. D., Williams, P. E., Lacy, W. W. & Rabin, D. (1982). Adsorption and disposition of a glucose load in the conscious dog. American Journal of Physiology 242, E398E406.Google Scholar
Acheson, K., Schutz, Y., Bessard, T., Anantharaman, K., Flatt, J. P. & Jequier, E. (1988). Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. American Journal of Clinical Nutrition 48, 240247.CrossRefGoogle ScholarPubMed
Adkins, B. A., Myers, S. R., Hendrick, G. K., Stevenson, R. W., Williams, P. E. & Cherrington, A. D. (1987). Importance of the rate of intravenous glucose delivery to hepatic glucose balance in the conscious dog. Journal of Clinical Investigation 79, 557565.CrossRefGoogle ScholarPubMed
Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R. & Wahren, J. (1974). Substrate turnover during prolonged exercise. Journal of Clinical Investigation 53, 10801090.CrossRefGoogle ScholarPubMed
Andus, T., Bauer, J. & Gerok, W. (1991). Effects of cytokines on the liver. Hepatology 13, 364375.CrossRefGoogle ScholarPubMed
Bahr, M. (1994). Energiestoffwechsel und hepatische Haemodynamik bei Patienten mit Leberzirrhose (Energy expenditure and splanchnic haemodynamics in patients with liver cirrhosis). Doctoral Thesis, Medizinische Hochschule Hannover, Hannover.Google Scholar
Berry, M. N., Kun, E. & Werner, H. V. (1973). Regulatory role of reducing equivalent transfer from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. European Journal of Biochemistry 33, 407417.CrossRefGoogle ScholarPubMed
Brundin, T. (1993). Mechanisms of nutrient-induced thermogenesis: total and splanchnic oxygen consumption and blood flow. International Journal of Obesity, Suppl. 3, S52S55.Google Scholar
Brundin, T., Thörne, A. & Wahren, J. (1992). Heat leakage across the abdominal wall and meal-induced thermogenesis in normal-weight and obese subjects. Metabolism 41, 4955.CrossRefGoogle ScholarPubMed
Brundin, T. & Wahren, J. (1993). Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose. American Journal of Physiology 264, E504E513.Google ScholarPubMed
Brundin, T. & Wahren, J. (1994). Effects of i.v. amino acids on human splanchnic and whole body oxygen consumption, blood flow and blood temperatures. American Journal of Physiology 266, E396E402.Google ScholarPubMed
Clark, D. G., Brinkman, M., Filsell, O. H., Lewis, S. J. & Berry, M. N. (1982). No major role for (Na+K+)-dependent adenosine triphosphatase apparent in hepatocytes from hyperthyroid rats. Biochemical Journal 202, 661665.CrossRefGoogle ScholarPubMed
David, M., Petit, W. A., Laughlin, M. R., Shulman, R., King, J. E. & Barrett, E. J. (1990). Simultaneous synthesis and degradation of rat liver glycogen. An in vitro nuclear magnetic resonance spectroscopic study. Journal of Clinical Investigation 86, 612617.CrossRefGoogle Scholar
Davies, M. (1961). On body size and tissue respiration. Journal of Cellular and Comparative Physiology 57, 135147.CrossRefGoogle ScholarPubMed
Dietze, G., Wicklmayr, M. & Mehnert, H. (1978). On the key role of ketogenesis for the regulation of glucose homoeostasis during fasting: Intrahepatic control, ketone levels and peripheral pyruvate oxidation. In Biochemical and Clinical Aspects of Ketone Body Metabolism, pp. 213225 [Söling, H. D. and Seufert, C. D., editors]. Stuttgart: G. Thieme Publisher.Google Scholar
Ebiner, J. R., Acheson, K. J., Doerner, A., Maeder, E., Arnaud, M. J., Jequier, E. & Felber, J. P. (1979). Comparison of carbohydrate utilization in man using indirect calorimetry and mass spectrometry after an oral load of 100 g naturally labelled [13C]glucose. British Journal of Nutrition 41, 419429.CrossRefGoogle Scholar
Elia, M. (1991). The inter-organ flux of substrates in fed and fasted man, as indicated by arterio-venous balance studies. Nutrition Research Reviews 4, 331.CrossRefGoogle Scholar
Elia, M. (1992). Organ and tissue contribution to metabolic rate. In Energy Metabolism: Tissue Determinants and Cellular Corollaries, pp. 6180 [Kinney, J. M. and Tucker, H. N. editors]. New York: Raven Press Ltd.Google Scholar
Felig, P. & Wahren, J. (1975). Fuel homeostasis in exercise. New England Journal of Medicine 293, 10781084.Google ScholarPubMed
Ferrannini, E., Bjorkman, O., Reichard, G., Pilo, A., Olsson, M., Wahren, J. & DeFronzo, R. (1985). The disposal of an oral glucose load in healthy subjects: a quantitative study. Diabetes 34, 580588.CrossRefGoogle ScholarPubMed
Flatt, J. P. (1978). The biochemistry of energy expenditure. In Recent Advances in Obesity Research, vol. 2, pp. 211218 [Bray, G., editor]. London: Newman Publishing.Google Scholar
Flatt, J. P. (1992). Energy costs for ATP synthesis. In Energy Metabolism: Tissue Determinants and Cellular Corollaries, pp. 319342 [Kinney, J. M. and Tucker, H. N. editors]. New York: Raven Press Ltd.Google Scholar
Frayn, K. N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology 55, 628634.CrossRefGoogle ScholarPubMed
Frayn, K. N., Lund, P. & Walker, M. (1993). Interpretation of oxygen and carbon dioxide exchange across tissue beds in vivo. Clinical Science 85, 373384.CrossRefGoogle ScholarPubMed
Gay, L. J., Schneiter, Ph., Schutz, Y., Di Vetta, V., Jequier, E. & Tappy, L. (1994). A non-invasive assessment of hepatic glycogen kinetics and post-absorptive gluconeogenesis in man. Diabetologia 37, 517523.CrossRefGoogle ScholarPubMed
Gil, K. M., Gump, F. E., Starker, P. M., Askanazy, J., Elwyn, D. H. & Kinney, J. M. (1985). Splanchnic substrate balance in malnourished patients during parenteral nutrition. American Journal of Physiology 248, E409E419.Google ScholarPubMed
Hagenfeldt, L. & Wahren, J. (1973). Effect of exercise on splanchnic exchange of free fatty acids. Metabolism 22, 815820.CrossRefGoogle ScholarPubMed
Havel, R. J. (1974 a). Interrelationship between carbohydrate and lipid metabolism in the splanchnic region in man. In Regulation of Hepatic Metabolism, pp. 180190 [Lundquist, F. and Tygstrup, N. editors]. Copenhagen: Munksgaard.Google Scholar
Havel, R. J. (1974 b). Splanchnic and extrasplanchnic use of fuels in man. In Regulation of Hepatic Metabolism, pp. 612616 [Lundquist, F. and Tygstrup, N., editors]. Copenhagen: Munksgaard.Google Scholar
Havel, R. J., Kane, J. P., Balasse, E. O., Segel, N. & Basso, L. V. (1970). Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. Journal of Clinical Investigation 49, 20172035.CrossRefGoogle ScholarPubMed
Hellerstein, M. K., Christiansen, M., Kaempfer, S., Kletke, C., Wu, K., Reid, J. S., Hellerstein, S. & Shackleton, C. H. L. (1991). Measurement of de novo hepatic lipogenesis in humans using stable isotopes. Journal of Clinical Investigation 87, 18411852.CrossRefGoogle ScholarPubMed
Hellerstein, M. K., Neese, R. A. & Schwarz, J.-M. (1993). Model for measuring absolute rates of hepatic de novo lipogenesis and reesterification of free fatty acids. American Journal of Physiology 265, E814E820.Google ScholarPubMed
Jackson, R., Blix, P., Matthews, J., Morgan, L., Rubenstein, A. & Nabarro, J. (1993). Comparison of peripheral glucose uptake after oral glucose loading and a mixed meal. Metabolism 32, 706710.CrossRefGoogle Scholar
Jarrett, I. G., Clark, D. G., Filsell, O. H., Harvey, J. W. & Clark, M. G. (1979). The application of microcalorimetry to the assessment of metabolic efficiency in isolated rat hepatocytes. Biochemical Journal 180, 631638.CrossRefGoogle Scholar
Keller, U., Gerber, P. P. G. & Stauffacher, W. (1988). Fatty acid-independent inhibition of hepatic ketone body production by insulin in humans. American Journal of Physiology 254, E694E699.Google ScholarPubMed
Kelley, D., Mitrakou, A., Marsh, H., Schwenk, F., Benn, J., Sonnenberg, G., Arcangeli, M., Aoki, T., Sorensen, J., Berger, M., Sonksen, P. & Gerich, J. (1988). Skeletal muscle glycolysis, oxidation and storage of an oral glucose load. Journal of Clinical Investigation 81, 15631571.CrossRefGoogle ScholarPubMed
Krebs, H. A., Cornell, N. W., Lund, P. & Hems, R. (1974). Some aspects of hepatic energy metabolism. In Regulation of Hepatic Metabolism, pp. 549565 [Lundquist, F. and Tygstrup, N. editors]. Copenhagen: Munksgaard.Google Scholar
McGarry, J. D. & Foster, D. W. (1980). Regulation of free fatty acid oxidation and ketone body production. Annual Review of Biochemistry 49, 395420.CrossRefGoogle ScholarPubMed
Magnusson, I., Rothman, D. L., Jucker, B., Cline, G. W., Shulman, R. G. & Shulman, G. I. (1994). Liver glycogen in fed and fasted humans. American Journal of Physiology 266, E796E803.Google ScholarPubMed
Merli, M., Eriksson, L. S., Hagenfeldt, L. & Wahren, J. (1986). Splanchnic and leg exchange of free fatty acids in patients with cirrhosis. Journal of Hepatology 3, 348355.CrossRefGoogle Scholar
Müller, M. J., Acheson, K. J., Burger, A. G. & Jequier, E. (1990). Evidence that hyperglycemia per se does not inhibit hepatic glucose production in man. European Journal of Applied Physiology 60, 293299.CrossRefGoogle Scholar
Müller, M. J., Böker, K. H. W. & Selberg, O. (1994 a). Are patients with liver cirrhosis hypermetabolic? Clinical Nutrition 13, 131144.CrossRefGoogle ScholarPubMed
Müller, M. J., Böker, K. H. W. & Selberg, O. (1994 b). Metabolism of energy yielding substrates in liver cirrhosis. Clinical Investigator (In the Press).CrossRefGoogle ScholarPubMed
Müller, M. J., Möhring, J. & Seitz, H. J. (1988). Regulation of hepatic glucose output by glucose in vivo. Metabolism 37, 5560.CrossRefGoogle Scholar
Müller, M. J., Paschen, U. & Seitz, H. J. (1982). Starvation-induced ketone body production in the conscious unrestrained miniature pig. Journal of Nutrition 112, 13791386.CrossRefGoogle ScholarPubMed
Müller, M. J., Paschen, U. & Seitz, H. J. (1983). Glucose production measured by tracer and balance data in conscious miniature pig. American Journal of Physiology 244, E236E244.Google ScholarPubMed
Müller, M. J., Rieger, A., Willmann, O., Lautz, H. U., Balks, H. J., von zur Mühlen, A., Canzler, H. & Schmidt, F. W. (1992). Metabolic responses to lipid infusions in patients with liver cirrhosis. Clinical Nutrition 11, 193206.CrossRefGoogle ScholarPubMed
Nilsson, L. H., Fürst, P. & Hultman, E. (1973). Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scandinavian Journal of Clinical and Laboratory Investigation 32, 331337.CrossRefGoogle ScholarPubMed
Nosadini, R., Avogadro, A., Mollo, F., Marescotti, C., Tiengo, A., Duner, E., Merkel, C., Gatta, A., Zuin, R., DeKreutzenberg, S., Trevisan, T. & Crepaldi, G. (1984). Carbohydrate and lipid metabolism in cirrhosis. Evidence that hepatic uptake of gluconeogenic precursors and of free fatty acids depends on effective hepatic blood flow. Journal of Clinical Endocrinology and Metabolism 58, 11251132.CrossRefGoogle Scholar
Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. Jr (1969). Liver and kidney metabolism during prolonged starvation. Journal of Clinical Investigation 48, 574583.CrossRefGoogle ScholarPubMed
Owen, O. E., Mozzoli, M. A., Reichle, F. A., Kreulen, T. H., Owen, R. S., Boden, G. & Polansky, M. (1985). Hepatic and renal metabolism before and after portasystemic shunts in patients with cirrhosis. Journal of Clinical Investigation 76, 12091217.CrossRefGoogle ScholarPubMed
Owen, O. E., Reichle, F. A., Mozzoli, M. A., Kreulen, T., Patel, M. S., Elfenbein, I. B., Golsorkhi, M., Chang, K. H. Y., Rao, N. S., Sue, H. S. & Boden, G. (1981). Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis. Journal of Clinical Investigation 68, 240252.CrossRefGoogle ScholarPubMed
Owen, O. E., Trapp, V., Reichard, G. Jr, Mozzoli, M. A., Moctezuma, J., Paul, P., Scutches, G. L. & Boden, G. (1983). Nature and quantity of fuels consumed in patients with alcoholic cirrhosis. Journal of Clinical Investigation 72, 18211832.CrossRefGoogle ScholarPubMed
Rabkin, M. & Blum, J. J. (1985). Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose. fructose, alanine and acetate. Biochemical Journal 225. 761786.CrossRefGoogle ScholarPubMed
Radziuk, . J. (1989). Hepatic glycogen in humans. I. Direct formation after oral or intravenous glucose or after a 24-h fast. American Journal of Physiology 257, E145El57.Google ScholarPubMed
Reichard, G. A., Owen, 0. E., Haff, A. C., Paul, B. & Bortz, W. M. (1974). Ketone body production and oxidation in fasting obese humans. Journal of Clinical Invesrigarion 53, 508515.CrossRefGoogle ScholarPubMed
Remesy, C. & Demigne, C. (1983). Changes in the availability of glucogenic and ketogenic substrates and liver metabolism in fed or starved rats. Annals of Nutrition and Metabolism 27. 5770.Google ScholarPubMed
Rothman, D. L., Magnusson, I., Katz, L. D., Shulman, R. G. & Shulman, G. I. (1991). Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254, 573576.CrossRefGoogle Scholar
Scholz, R., Schwabe, U. & Soboll, S. (1984). Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis. and CO2-production following addition of octanoate and oleate in perfused rat liver. European Journal of Biochemistry 141, 223230.CrossRefGoogle ScholarPubMed
Schwenke, W.-D., Soboll, S., Seitz, H. J. & Sies, H. (1981). Mitochondria1 and cytosolic ATP/ADP ratios in rat liver in vivo. Biochemical Journal 200, 405408.CrossRefGoogle Scholar
Seifter, S. & Englard, S. (1988). Energy metabolism. In The Liver: Biology and Pathobiology. 2nd ed., pp. 279315 [Arias, J. M., Jacoby, W. B., Popper, H., Schachter, D. and Shafritz, D. A. editors]. New York: Raven Press Ltd.Google Scholar
Thomas, C. D., Peters, J. C., Reed, G. W., Abumrad, N. N., Sun, M. & Hill, J. O. (1992). Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans. American Journal of Clinical Nutrition 55, 934942.CrossRefGoogle ScholarPubMed
Tygstrup, N., Winkler, K. & Lundquist, F. (1965). The mechanism of the fructose effect on the ethanol metabolism of the human liver. Journal of Clinical Investigation 44, 817830.CrossRefGoogle ScholarPubMed
Vranic, M. (1992). Banting Lecture: Glucose turnover. A key to understanding the pathogenesis of diabetes (indirect effects of insulin). Diaberes 41, 11881206.Google ScholarPubMed
Wahren, J., Hagenfeldt, L. & Felig, P. (1975). Splanchnic and leg exchange of glucose. amino acids and free fatty acids during exercise in diabetes mellitus. Jornal of Clinical Invesiigation 55. 13031314.CrossRefGoogle ScholarPubMed
Wasserman, D. H. & Cherrington, A. D. (1991). Hepatic fuel metabolism during muscular work: role and regulation. American Journal of Physiology 260, E811E824.Google ScholarPubMed
Yamatani, K., Quing Shi, Z., Giacca, A., Gupta, R., Fisher, S., Lickley, H. L. A. & Vranic, M. (1992). Role of FFA-glucose cycle in glucoregulation during exercise in total absence of insulin. American Journal of Physiology 263, E646E653.Google ScholarPubMed