Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T09:31:10.460Z Has data issue: false hasContentIssue false

The Metabolism and Function of Pantothenic Acid

Published online by Cambridge University Press:  28 February 2007

D. E. Hughes
Affiliation:
Medical Research Council Unit for Research in Cell Metabolism, Department of Biochemistry, University of Sheffield
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1953

References

Bacon, J. S. D. & Jenkins, G. N. (1943). Biochem. J. 37, 492.CrossRefGoogle Scholar
Baddiley, J. & Thain, E. M. (1951 a). J. chem. Soc. p. 246.CrossRefGoogle Scholar
Baddiley, J. & Thain, E. M. (1951 b). Chem. & Ind. p. 337.Google Scholar
Baddiley, J. & Thain, E. M. (1951 c). J. chem. Soc. p. 2253.CrossRefGoogle Scholar
Baddiley, J. & Thain, E. M. (1952). Unpublished.Google Scholar
Barker, H. A. (1951). In Phosphorus Metabolism :a Symposium on the Role of Phosphorus in the Metabolism of Plants and Animals, Vol. I p. 204. [McElroy, W. D. and Glass, B.Editors.] Baltimore: The Johns Hopkins Press.Google Scholar
Barton-Wright, E. C. (1946). Practical Methods for the Microbiological Assay of the Vitamin B Complex and Essential Amino Acids. London: Ashe Laboratories.Google Scholar
Beinert, H., Von Korff, R. W., Green, D. E., Buyske, D. A., Handschumacher, R. E., Higgins, H. & Strong, F. M. (1952). J. Amer. chem. Soc. 74, 854.CrossRefGoogle Scholar
Brown, G. M., Craig, J. A. & Snell, E. E. (1950) Arch. Biochem. J. 27, 473.Google Scholar
Brown, G. M. & Snell, E. E. (1952). J. biol. Chem. 198, 375.CrossRefGoogle Scholar
Cheldelin, V. H., Nygaard, A. P., Hale, O. M., & King, T. E. (1951). J. Amer. chem. Soc. 73, 5004.CrossRefGoogle Scholar
Chou, T. C. & Lipmann, F. (1952). J. biol. Chem. 196, 89.CrossRefGoogle Scholar
Coates, M. E., Ford, J. E., Harrison, G. F., Kon, S. K., Shepheard, E. E. & Wilby, F. W. (1952). Brit. J. Nutr. 6, 75.CrossRefGoogle Scholar
Cowgill, G. R., Winters, R. W., Schultz, R. B. & Krehl, W. A. (1952). Int. Z. Vitaminforsch. 23, 275.Google Scholar
Deane, H. W. & McKibbin, J. M. (1946). Endocrinology, 38, 385.CrossRefGoogle Scholar
DeVries, W. H., Govier, W. M., Evans, J. S., Gregory, J. D., Novelli, G. D., Soodak, M. & Lipmann, F. (1950). J. Amer. chem. Soc. 72, 4838.CrossRefGoogle Scholar
Dorfman, A., Berkman, S. & Koser, S. A. (1942). J. biol. Chem. 144, 393.CrossRefGoogle Scholar
Dumm, M. E. & Ralli, E. P. (1948). Endocrinology, 43, 283.CrossRefGoogle Scholar
Dumm, M. E. & Ralli, E. P. (1950). Fed. Proc. 9 34.Google Scholar
Farrer, S. (1951). Aust. J. exp. Biol. med. Sci. 29, 285.CrossRefGoogle Scholar
Feldberg, W. & Mann, T. (1946). J. Physiol. 104, 411.CrossRefGoogle Scholar
Figge, F. H. & Atkinson, W. B. (1941). Proc. Soc. exp. Biol., N.Y., 48, 112.CrossRefGoogle Scholar
Gaunt, R., Liling, M. & Mushett, C. W. (1946). Endocrinology, 38, 127.CrossRefGoogle Scholar
Govier, W. M. & Gibbons, A. J. (1951). Arch. Biochem. Biophys. 32, 349.CrossRefGoogle Scholar
Gregory, J. D., Novelli, D. G. & Lipmann, F. (1952). J. Amer. chem. Soc. 74, 854.CrossRefGoogle Scholar
Guehring, R. R., Hurley, L. S. & Morgan, A. F. (1952). J. biol. Chem. 197, 485.CrossRefGoogle Scholar
Handschumacher, R. E., Mueller, G. C. & Strong, F. M. (1951). J.biol. Chem. 189, 335.CrossRefGoogle Scholar
Harrison, J. S. (1949). Analyst, 74, 597.CrossRefGoogle Scholar
Hills, G. M. (1943). Biochem, J. 37, 418.CrossRefGoogle Scholar
HurIey, L. S. & Morgan, A. F. (1952). J. biol. Chem. 195, 583.CrossRefGoogle Scholar
Johnson, G. & Kupferberg, A. B. (1948). Proc. Soc. exp. Biol., N.Y., 67, 390.CrossRefGoogle Scholar
Jukes, T. H. (1942). J. Nutr. 21, 193.CrossRefGoogle Scholar
Kaplan, N. O. & Lipmann, F. (1948). J. biol. Chem. 174, 37.CrossRefGoogle Scholar
Kaufman, S. (1951). In Phosphorus Metabolism :a Symposium on the Role of Phosphorus in the Meta- bolism of Plants and Animals, Vol. I, p.370. [McElroy, W. D. and Glass, B., editors.] Baltimore: The Johns Hopkins Press.Google Scholar
Klein, H. P. & Villee, C. A. (1951). Fed. Proc. 10, 209.Google Scholar
Korkes, S., Del Campillo, A., Gunsalus, I. C. & Ochoa, S. (1951). J. biol. Chem. 193, 721.CrossRefGoogle Scholar
Kornberg, A. (1950). J. biol. Chm. 182, 805.CrossRefGoogle Scholar
Kornberg, A. & Pricer, W. E. Jr. (1950). J. biol. Chem. 182, 763.Google Scholar
Krebs, H. A., Sykes, W. O. & Bartley, W. C. (1947). Biochem. J. 41, 622.CrossRefGoogle Scholar
Levintow, L. & Novelli, V. G. D. (1952). Abstr. Pap. Amer. chem. Soc. 122nd Mtg, p. 33C.Google Scholar
Lichstein, H. C., Waisman, H. A., Elvehjem, C. A. & Clark, P. F. (1944). Prcc. Soc. exp. Biol., N.Y., 56, 3.CrossRefGoogle Scholar
Lipmann, F., Jones, M. E. & Black, S. (1952). Congr. int. Biochim. II. Paris. Symposium sur le Cycle Tricarboxylique, p. 55.Google Scholar
Lipmann, F., Kaplan, N. O., Novelli, G. D. & Turtle, I., (1947). J. biol. Chem. 167, 869.CrossRefGoogle Scholar
Lynen, F. (1951). Liebigs Ann. 574, 33.CrossRefGoogle Scholar
Lynen, F. & Reichert, E. (1951). Angew. Chem. 63, 47.CrossRefGoogle Scholar
Lynen, F. & Reichert, E. & Rueff, L. (1951). Leibigs Ann. 574, 1.Google Scholar
Maas, W. K. (1952 a). J. biol. Chem. 198, 23.CrossRefGoogle Scholar
Maas, W. K. (1952 b). J. Bact. 63, 227.CrossRefGoogle Scholar
McIlwain, H. (1943). Advanc. Enzymol. 7, 409.Google Scholar
McIlwain, H. & Hughes, D. E. (1944). Biochem. J. 38, 187.CrossRefGoogle Scholar
McIlwain, H. & Hughes, D. E. (1945). Biochem. J. 39, 133.CrossRefGoogle Scholar
McIlwain, H. & Hughes, D. E. (1948). Biochem. J. 43, 60.CrossRefGoogle Scholar
McRorie, R. A. & Williams, W. L. (1951). J. Bact. 61, 737.CrossRefGoogle Scholar
Melampy, R. M. & Northrop, L. C. (1951). Arch. Biochem. Biophys. 30, 180.Google Scholar
Morgan, A. F. (1951). Vitam. & Horm. 9, 162.Google Scholar
Nachmanson, D. & Bejtnan, M. (1946). J. biol. Chem. 165, 551.CrossRefGoogle Scholar
Neilands, J. B. & Strong, F. M. (1948). Arch. Biochem. 19, 287.Google Scholar
Novelli, G. D., Flyn, R. M. & Lipmann, F. (1949). J. biol. Chem. 177, 493.CrossRefGoogle Scholar
Novelli, G. D., Gregory, J. D., Flyn, R. M. & Schmetz, F. J. (1951). Fed. Proc. 10, 229.Google Scholar
Novelli, G. D., Kaplan, N. O. & Lipmann, F. (1949). J. biol. Chem. 177, 97.CrossRefGoogle Scholar
Novelli, G. D. & Lipmann, F. (1947). J. biol. Chem. 171, 833.CrossRefGoogle Scholar
Novelli, D. G. & Schmetz, F. J. Jr. (1951). J. biol. Chem. 192, 181.CrossRefGoogle Scholar
Ochoa, S. (1952). Congr. int. Biochim. II. Paris. Symposium on Tricnrboxylic Acid Cycle p. 73.Google Scholar
Olson, R. E. & Kaplan, N. O. (1948). J. biol. Chem. 175, 515.CrossRefGoogle Scholar
Pavceck, P. L. & Baum, H. M. (1941). Proc. Soc.exp. Biol., N.Y., 47, 271.CrossRefGoogle Scholar
Pennington, D., Snell, E. E. & Williams, R. J. (1940). J. biol. Chem. 135, 213.CrossRefGoogle Scholar
Pierpoint, W. S. & Hughes, D. E. (1952). Congr. int. Biochim. II. Paris. Résumés Communications, P. 91.Google Scholar
Riggs, T. R. & Hegsted, D. M. (1951). J. biol. Chem. 193, 669.CrossRefGoogle Scholar
Roper, J. R. & McIlwain, H. (1948). J. gen. Microbiol. 2, xxviii.Google Scholar
Rowatt, E. (1948). J. gen. Microbiol. 2, 25.CrossRefGoogle Scholar
Sanadi, D. R. & Littlefield, J. W. (1951). J. biol. Chem. 193, 683.CrossRefGoogle Scholar
Sohaefer, A. E., McKibbin, J. M. & Elvehjem, C. A. (1942). J. biol. Chem. 143, 321.CrossRefGoogle Scholar
Shemin, D. & Kumin, S. (1952). J. biol. Chem. 198, 827.CrossRefGoogle Scholar
Shemin, D. & Wittenberg, J. (1951). A Ciba Foundation Conference on Isotopes in Biochemistry. London: J. and A. Churchill.Google Scholar
Shils, M. E., Chester, S. A. & Sass, M. (1951). Arch. Biochem. Biophys. 32, 359.CrossRefGoogle Scholar
Snell, E. E. (1941). J. biol. Chem. 139, 975.CrossRefGoogle Scholar
Snell, E. E., Brown, G. M., Peters, V. J, Craig, J. A., Wittle, E. L., Moore, J. A., McGlohon, V. RI. & Bird, O. D. (1950). J. Amer. chem. Soc. 72, 5349.CrossRefGoogle Scholar
Stadtman, E. R. (1952). Abstr. Pap. Amer. chem. Soc.122nd Mtg, p. 32c.Google Scholar
Stadtman, E. R., Noveili, G. D. & Lipmann, F. (1951). J. biol. Chem. 191, 365.CrossRefGoogle Scholar
Stern, J. R., Ochoa, S. & Lynen, F. (1952). J. biol Chem. 198, 313.CrossRefGoogle Scholar
Stern, J. R., Shapiro, B., Stadtman, E. R., Ochoa, S. (1951). J. biol. Chem. 193, 703.CrossRefGoogle Scholar
Von Korff, R. W. (1952). Unpublished.Google Scholar
Wagner, R. P. (1949). Proc. nut. Acad. Sci., Wash., 35, 185.CrossRefGoogle Scholar
Wang, T. P., Shuster, L. & Kaplan, N. O. (1952). J. Amer. chem. Soc. 74, 3204.CrossRefGoogle Scholar
Welch, A. D. & Nichol, C. A. (1952). Ann. Rev. Biochem. 21, 633.CrossRefGoogle Scholar
West, H. D., Bent, M. J., Rivera, R. E. & Tisdale, R. E. (19431944). Arch. Biochem. 3, 321.Google Scholar
Williams, W. L., Gardner, W. U. & DeVita, J. (1946). Endocrinology, 38, 368.CrossRefGoogle Scholar
Williams, W. L., Hoff-Jsrgensen, E. & Snell, E. E. (1949). J. biol. Chem. 177, 933.CrossRefGoogle Scholar