Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T07:07:47.384Z Has data issue: false hasContentIssue false

Neural integration of tissue and whole-animal regulation of digestive secretions

Published online by Cambridge University Press:  11 October 2007

Claude Rozé
Affiliation:
INSERM U410, Facultéde Médecine X Bichat, 16 Rue H. Huchard., 75870, Paris Cedex, 18, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Regulation of Gastrointestinal Secretion
Copyright
Copyright © The Nutrition Society 1996

References

Adler, G., Beglinger, C., Braun, U., Reinshagen, M., Koop, I., Schafmayer, A., Rovati, L. & Arnold, R. (1991). Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology 100, 537545.CrossRefGoogle ScholarPubMed
Bonaz, B., De Giorgio, R. & Taché, Y. (1993 a). Peripheral bombesin induces c-fos protein in the rat brain. Brain Research 600, 353357.CrossRefGoogle ScholarPubMed
Bonaz, B., Taylor, I. & Taché, Y. (1993 b). Peripheral peptide YY induces c-fos-like immunoreactivity in the rat brain. Neuroscience Letters 163, 7780.CrossRefGoogle ScholarPubMed
Castagliuolo, I., La Mont, J. T., Letourneau, R., Kelly, C., O'Keane, J. C., Jaffer, A., Theoarides, T. C. & Pothoulakis, C. (1994). Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 107, 657665.CrossRefGoogle ScholarPubMed
Fraser, K. A. & Davison, J. S. (1992). Cholecystokinin-induced c-fos expression in the rat brain stem is influenced by vagal nerve integrity. Experimental Physiology 77, 225228.CrossRefGoogle ScholarPubMed
Fu-Cheng, X., Anini, Y., Chariot, J., Voisin, T., Galmiche, J. P. & Rozé, C. (1995 a). Peptide YY release after intraduodenal, intraileal, and intracolonic administration of nutrients in rats. European Journal of Physiology 431, 6675.CrossRefGoogle ScholarPubMed
Fu-Cheng, X., Chariot, J., Martinez, J. & Rozé, C. (1995b) Rôle du nerf vague, de la cholécystokinine et de la bombésine dans les mécanismes nerveux de la libération post-prandiale de peptide YY chez le rat (Role of the vagus nerve, cholecystokinin and bombesin in the neural control of post-prandial PYY release in the rat). Gastroentérologie Clinique et Biologique 19, 416 Abstr.Google Scholar
Gershon, M. D., Kirchgessner, A. L. & Wade, P. R. (1994). Functional anatomy of the enteric nervous system. In Physiology of the Gastrointestinal Tract, 3rd ed. 3814–22 [Johnson, L. R., Alpers, D. H., Christensen, J., Jacobson, E. D. & Walsh, J. H., editor]. New York: Raven Press.Google Scholar
Greeley, G. H., Jeng, Y. J., Gomez, G., Hashimoto, T., Hill, F. L. C., Kern, K., Kurosky, T., Chuo, H. F. & Thompson, J. C. (1988). Evidence for regulation of peptide YY release by the proximal gut. Endocrinology 124, 14381443.CrossRefGoogle Scholar
Gross, P. M., Wall, K. M., Pang, J. J., Shaver, S. W. & Wainman, D. S. (1990). Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. American Journal of Physiology 259, R1131R1138.Google ScholarPubMed
Hernandez, D. E., Arredondo, M. E., Xue, B. G. & Jennes, L. (1994). Saturable binding of circulating peptide YY in the dorsal vagal complex of rats. American Journal of Physiology 266, G511G516.Google ScholarPubMed
Holzer, P. (1988). Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin-related peptide and other neuropeptides. Neuroscience 24, 739768.CrossRefGoogle Scholar
Holzer, P. (1991). Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacological Reviews 43, 143201.Google ScholarPubMed
Kirchgessner, A. L., Tamir, H. & Gershon, M. D. (1992). Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. Journal of Neuroscience 12, 235249.CrossRefGoogle ScholarPubMed
Li, Y. & Owyang, C. (1993). Vagal afferent pathway mediates physiological action of cholecystokinin on pancreatic enzyme secretion. Journal of Clinical Investigation 92, 418424.CrossRefGoogle ScholarPubMed
Li, Y. & Owyang, C. (1994). Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 107, 525531.CrossRefGoogle ScholarPubMed
Mei, N. (1983). Sensory structures in viscera. In Progress in Sensory Physiology, vol. 4, 242 [Autrum, H., Ottoson, D., Perl, E. R., Schmidt, R. F., Shimazu, H. & Willis, W. D., editor]. New York: Springer Verlag.CrossRefGoogle Scholar
Menetrey, D. & Basbaum, A. I. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. Journal of Comparative Neurology 255, 439450.CrossRefGoogle Scholar
Menetrey, D., Gannon, A., Levine, J. D. & Basbaum, A. I. (1989). Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. Journal of Comparative Neurology 285, 177195.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1982). Principles of horseradish peroxide neurochemistry and their applications for tracing neural pathways – axonal transport, enzyme histochemistry, and light microscopy analysis. In Tracing Neural Connections with Horseradish Peroxidase, pp. 1151 [Mesulam, M. M., editor]. Chichester: Wiley.Google Scholar
Moran, T. H. & McHugh, P. R. (1992). Vagal receptor transport. In Neuroanatomy and Physiology of Abdominal Vagal Afferents, pp. 157177 [Ritter, S., Ritter, R. C. & Barnes, C. D., editor]. Boca Raton: CRC.Google Scholar
Perdue, M. H. & McKay, D. M. (1994). Integrative immunophysiology in the intestinal mucosa. American Journal of Physiology 267, G151G165.Google ScholarPubMed
Pothoulakis, C., Castagliuolo, I., La Mont, T., Jaffer, A., O'Keane, J. C., Snider, R. M. & Leeman, S. E. (1994). CP-96, 345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proceedings of the National Academy of Sciences, USA 91, 947951.CrossRefGoogle Scholar
Raybould, H. & Taché, Y. (1988). Cholecystokinin inhibits gastric motility and emptying via a capsaicin sensitive vagal afferent pathway in rats. American Journal of Physiology 255, G242.Google Scholar
Renehan, W. E., Zhang, X., Beierwaltes, W. H. & Fogel, R. (1995). Neurons in the dorsal motor nucleus of the vagus may integrate vagal and spinal information from the GI tract. American Journal of Physiology 268, G780G790.Google ScholarPubMed
Rogers, R. C. & Hermann, G. E. (1992). Central regulation of brainstem gastric vago-vagal control circuits. In Neuroanatotny and Physiology of Abdominal Vagal Afferents, pp. 100156 [Ritter, S., Ritter, R. C. & Barnes, C. D., editor]. Boca Raton: CRC.Google Scholar
Rogers, R. C. & McCann, M. J. (1993). Intramedullary connections of the gastric region in the solitary nucleus: a biocytin histochemical tracing study in the rat. Journal of the Autonomic Nervous System 42, 119130.CrossRefGoogle ScholarPubMed
Rogers, R., McTigue, D. & Hermann, G. (1995). Vagovagal reflex control of digestion: afferent modulation by neural and endoneurocrine factors. American Journal of Physiology 268, G1G10.Google ScholarPubMed
Sengupta, J. N. & Gebhart, G. F. (1994). Gastrointestinal afferent fibers and sensation. In Physiology of the Gastrointestinal Tract, 3rd ed. 483519 [Johnson, L. R., Alpers, D. H., Christensen, J., Jacobson, E. D. & Walsh, J., editor]. New York: Raven Press.Google Scholar
Stead, R. H., Tomioka, M., Quinonez, G., Simon, G. T., Felten, S. Y. & Bienenstock, J. (1987). Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proceedings of the National Academy of Sciences, USA 84, 29752979.CrossRefGoogle ScholarPubMed
Taylor, D. C. M., Pierau, F.-K. & Schmid, H. (1983). The use of fluorescent tracers in the peripheral sensory nervous system. Journal of Neuroscience Methods 8, 211224.CrossRefGoogle ScholarPubMed
Wan, X. S. T., Trojanowski, J. Q. & Gonatas, J. O. (1982). Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes: their uptake and clearance, transganglionic, and retrograde transport and sensitivity. Brain Research 243, 215224.CrossRefGoogle ScholarPubMed
Yoneda, M. & Taché, Y. (1995). Serotonin enhances gastric acid response to TRH analog in the dorsal vagal complex through 5HT2 receptors in rats. American Journal of Physiology 269, R1R6.Google ScholarPubMed