Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T19:51:30.018Z Has data issue: false hasContentIssue false

The scientific rationale and clinical application of short-chain fatty acids and medium-chain triacylglycerols

Published online by Cambridge University Press:  11 October 2007

Omaida C. Velázquez
Affiliation:
Harrison Department of Surgical Research and Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, Philadelphia, PA 191Q4, USA
Renée W. Seto
Affiliation:
Harrison Department of Surgical Research and Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, Philadelphia, PA 191Q4, USA
John L. Rombeau
Affiliation:
Harrison Department of Surgical Research and Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, Philadelphia, PA 191Q4, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Principal Symposium on ‘Lipid absorption and metabolism: physiological and molecular aspects’
Copyright
Copyright © The Nutrition Society 1996

References

Adrian, T. E., Ferri, G.-L., Bacarese-Hamilton, A. J., Fuessl, H. S., Polak, M. & Bloom, S. R. (1985). Human distribution and release of a putative new gut hormone peptide YY. Gastroenterology 89, 10701077..CrossRefGoogle ScholarPubMed
Argenzio, R. A., Miller, N., & Engelhardt, W. v. (1975). Effect of volatile fatty acids on water and ion absorption from the goat colon. American Journal of Physiology 229, 9971002..CrossRefGoogle ScholarPubMed
Argenzio, R. A., Southworth, M., Lowe, J. E., & Stevens, C. E. (1977). Inter-relationship of Na, HCO3 and volatile fatty acid transport by equine large intestine. American Journal of Physiology 233, E469E478..Google Scholar
Argenzio, R. A. & Whipp, S. C. (1979). Inter-relationship of sodium, chloride, bicarbonate and acetate transport by the colon of the pig. Journal of Physiology 295, 365381..CrossRefGoogle ScholarPubMed
Awad, A. B., Ferger, S. L. & Fink, C. S. (1990). Effect of dietary fat on the lipid composition and utilization of short-chain fatty acids by rat colonocytes. Lipids 25, 316320..CrossRefGoogle ScholarPubMed
Awad, A. B., Horvath, P. J. & Andersen, M. S. (1991). Influence of butyrate on lipid metabolism, survival, and differentiating of colon cancer cells. Nutrition and Cancer 16, 125133..CrossRefGoogle ScholarPubMed
Babayan, V. K. (1987). Medium chain triglycerides and structured lipids. Lipids 22, 421423..CrossRefGoogle ScholarPubMed
Bach, A. C. & Babayan, V. K. (1982). Medium-chain triglycerides: an update. American Journal of Clinical Nutrition 36, 950962..CrossRefGoogle ScholarPubMed
Bach, A. C., Guisard, D., Debry, G. & Metais, P. (1974). Metabolic effects following a medium chain triglyceride load in dogs. Influence of the perfusion rate. Archives Internationales de Physiologic et de Biochimie 82, 1974..Google ScholarPubMed
Bach, A. C., Schirardin, H., Bauer, M. & Weryha, A. (1977). Ketogenic response to medium chain triglyceride load in the rat. Journal of Nutrition 107, 1863..CrossRefGoogle ScholarPubMed
Bach, A. C., Storck, D. & Meraihi, Z. (1988). Medium-chain triglycerides-based fat emulsion: an alternative energy supply in stress and sepsis. Journal of Parenteral and Enteral Nutrition 12, 82S88S..CrossRefGoogle Scholar
Barnard, J. A. & Warwick, G. (1992). Sodium butyrate rapidly induces ‘enterocytic-like’ differentiation and growth inhibition of HT-29 cells. Gastroenterology 102, A199..Google Scholar
Bartlet, D., Charsland, S. & Torosian, M. (1992). Differential effect of medium-and long-chain triglycerides on tumor growth and metastasis. Journal of Parenteral and Enteral Nutrition 16, 26S..Google Scholar
Bartram, H. P., Scheppach, W., Englert, S., Dusel, G., Richter, A., Richter, F. & Kasper, H. (1995). Effects of deoxycholic acid and butyrate on rnucosal prostaglandin E2 release and cell proliferation in the human sigmoid colon. Journal of Parenteral and Enteral Nutrition 19, 182186..CrossRefGoogle ScholarPubMed
Bartram, H. P., Scheppach, W., Schmidt, H., Hofmann, A., Dusel, G., Richter, F., Richter, A. & Kasper, H. (1993). Proliferation of human colonic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia, and pH. Cancer Research 53, 32833288..Google ScholarPubMed
Bell, L. & Williams, L. (1979). Histochemical demonstration of alkaline phosphatase in human large intestine, normal and diseased. Histochemistry 60, 8490..CrossRefGoogle Scholar
Bennegård, K., Lindmark, L., Wickströom, I., Scherstén, T. & Lundholm, K. (1984). A comparative study of the efficiency of intragastric and parenteral nutrition in man. American Journal of Clinical Nutrition 40, 752757..CrossRefGoogle ScholarPubMed
Binder, H. J. & Mehta, P. (1989). Short chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 96, 989996..CrossRefGoogle ScholarPubMed
Binder, H. J. & Mehta, P. (1990). Characterization of butyrate-dependent electroneutral Na-Cl absorption in the rat distal colon. European Journal of Physiology 417, 365369..CrossRefGoogle ScholarPubMed
Bishop, P. R., Warwick, G. J., Gishan, F. K. & Barnard, J. A. (1992). Sodium butyrate upregulates Na+-H+ exchanger mRNA and transport activity in CaCo-2 cells. Gastroenterology 102, A358..Google Scholar
Boffa, L. C., Lupton, J. R., Mariani, M. R., Ceppi, M., Newmark, H. L., Scalmati, A. & Lipkin, M. (1992). Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short-chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Research 52, 59065912..Google ScholarPubMed
Boffa, L. C., Vidali, G., Mann, R. S. & Allfrey, V. G. (1978). Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. Journal of Biological Chemistry 253, 33643366..CrossRefGoogle ScholarPubMed
Boffa, L., Vidali, G., Mann, R. & Allfrey, V. (1981). Manifold effects of sodium butyrate on nuclear function. Selective and reversible inhibition of phosphorylation of histones HI and H2A and impaired methylation of lysine and arginine residues in nuclear protein fractions. Journal of Biological Chemistry 256, 96129621..CrossRefGoogle Scholar
Bohmer, T., Rydning, A. & Solberg, H. E. (1974). Carnitine levels in human serum in health and disease. Clinica Chimica Acta 57, 5561..CrossRefGoogle ScholarPubMed
Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J. & Vogelstein, B. (1987). Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293297..CrossRefGoogle ScholarPubMed
Bowling, T. E., Raimundo, A. H., Grimble, G. K. & Silk, D. B. A. (1993). Reversal by short-chain fatty acids of colonic fluid secretion induced by enteral feeding. Lancet 342, 12661268..CrossRefGoogle ScholarPubMed
Bradburn, D. M., Mathers, J. C., Gunn, A., Burn, J., Chapman, P. D. & Johnston, D. A. (1993). Colonic fermentation of complex carbohydrates in patients with familial adenomatous polyposis. Gut 34, 630636..CrossRefGoogle ScholarPubMed
Bremer, J. (1980). Carnitine and its role in fatty acid metabolism. Trends in Biochemical Sciences 2, 207..Google Scholar
Bustos-Fernandez, L. B., Gonzalez, E., Marzi, A. & Ledesma Depaullo, M. I. (1971). Fecal acidorrhea. New England Journal of Medicine 284, 295298..CrossRefGoogle ScholarPubMed
Butler, R. N., Stafford, I., Triantafillos, E., O'Dee, C. D., Jarrett, I. G., Fettman, M. J. & Roberts-Thompson, I. C. (1990). Pyruvate sparing by butyrate and propionate in proliferating colonic epithelium. Comparative Biochemistry and Physiology 97B, 333337..Google Scholar
Butzer, J. D., Parmar, R. & Dalai, V. (1995). Butyrate enemas stimulate mucosal repair in an experimental colitis in the rat. Gastroenterology 108, A276..Google Scholar
Chehab, F. F., Kan, Y. W., Law, M. L., Hartz, J., Kao, F.-T. & Blostein, R. (1987). Human placental Na+, K+-ATPase α subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization. Proceedings of the National Academy of Sciences, USA 84, 79017905..CrossRefGoogle ScholarPubMed
Christman, J. K., Weich, N., Schoenbrun, B., Schneidman, N. & Acs, G. (1980). Hypomethyladon of DNA during differentiation of Friend erythroleukemia cells. Journal of Ceil Biology 86, 366370..CrossRefGoogle ScholarPubMed
Chung, Y. S., Song, I. S., Erickson, R. H., Sleisenger, M. H. & Kim, Y. S. (1985). Effect of growth and sodium butyrate on brush border membrane associated hydrolases in human colorectal cancer cell lines. Cancer Research 45, 29762982..Google ScholarPubMed
Colony, P. C. (1989). The identification of cell types in the normal adult colon. In Cell and Molecular Biology of Colon Cancer. pp. 221 [Augenlicht, L. H. editor]. Boca Raton: CRC Press..Google Scholar
Cotter, R., Taylor, C. A., Johnson, R. & Rowe, W. B. (1987). A metabolic comparison of a pure long-chain triglyceride lipid emulsion (LCT) and various medium-chain triglyceride (MCT)-LCT combination emulsion in dogs. American Journal of Clinical Nutrition 45, 927939..CrossRefGoogle ScholarPubMed
Cousenes, L. S., Gallwitz, D. & Alberts, B. M. (1979). Different accessibilities in chromatin to histone acetylase. Journal of Biological Chemistry 254, 17161723..CrossRefGoogle Scholar
Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut 22, 763779..CrossRefGoogle ScholarPubMed
Cummings, J. H. & Branch, W. J. (1990). Fermentation and production of short-chain fatty acids in human large intestine. In Dietary Fiber: Basic and Clinical Aspects, pp. 131152. [Vahouny, G. G. and Kritchevsky, D. editors]. New York: Plenum Press..Google Scholar
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut 28, 12211227..CrossRefGoogle ScholarPubMed
Czerniak, B., Herz, F., Westo, R. P. & Koss, L. G. (1987). Modification of H-ras oncogene p-21 expression and cell cycle progression in the human colon cancer cell line HT-29. Cancer Research 47, 28262830..Google Scholar
Dawes, R. F. H., Royle, G. T., Dennison, A. R., Crave, P. J. & Ball, M. (1986). Metabolic studies of a lipid emulsion containing medium-chain triglyceride in perioperative and total parenteral nutrition infusions. World Journal of Surgery 10, 3846..CrossRefGoogle ScholarPubMed
Deckelbaum, R. J., Hamilton, J. A., Carpentier, Y. A., Moser, A., Bengtsson-Olivecrona, G., Butbul, E., Gutman, A. & Olivecrona, T. (1990). Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implication for the mechanisms of lipase action. Biochemistry 29, 11361142..CrossRefGoogle ScholarPubMed
DeCosse, J. J., Miller, H. H. & Lesser, M. L. (1989). Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenopolyposis. Journal of the National Cancer Institute 81, 12901297..CrossRefGoogle Scholar
DeMichele, S., Karlstad, M. D., Babayan, V. K., Istfan, N., Blackburn, G. L. & Bistrian, B. R. (1988). Enhanced skeletal muscle and liver protein synthesis with structured lipid in enterally fed burned rats. Metabolism: Clinical and Experimental 37, 787795..CrossRefGoogle ScholarPubMed
Demigné, C. & Rémésy, C. (1985). Stimulation of absorption of volatile fatty acids and minerals in cecum of rats adapted to a very high fiber diet. Journal of Nutrition 115, 5360..CrossRefGoogle ScholarPubMed
Deng, G., Liu, G., Hu, L., Gum, J. R. & Kim, Y. S. (1992). Transcriptional regulation of the human placental-like alkaline phosphatase gene and mechanisms involved in its induction by sodium butyrate. Cancer Research 52, 33783383..Google ScholarPubMed
Deschner, E. E., Ruperto, J. F., Lupton, J. R. & Newmark, H. L. (1990). Dietary butyrate (tributyrin) does not enhance AOM-induced colon tumorigenesis. Cancer Letters 52, 7982..CrossRefGoogle Scholar
Dexter, D. L., Lee, E. S., Bliven, S. F., Glicksman, A. S. & Leith, J. T. (1984). Enhancement by N-methylformamide of the effect of ionizing radiation on qa human colon tumor xenografted in nude mice. Cancer Research 44, 49424946..Google Scholar
Ekman, L., Wretlind, A. & Moldawer, L. (1987). New developments in lipid emulsions for parenteral nutrition. Infusionstherapie und Klinische Ernahrung 14, 48..Google ScholarPubMed
Engelhardt, W. v. (1995). Absorption of short-chain fatty acids from the large intestine. In Physiological and Clinical Aspects of Short-Chain Fatty Acids, pp. 149170 [Cummings, J. H., Rombeau, J. L. and Sakata, T. editors]. Cambridge: Cambridge University Press..Google Scholar
Engelhardt, W. v. & Rechkemmer, G. (1983). Absorption of inorganic ions in short chain fatty acids in the colon of mammals. In Intestinal Transport. Fundamental and Comparative Aspects, pp. 2645 [Gilles-Baillien, M. and Gilles, R. editors]. Berlin: Springer-Verlag..CrossRefGoogle Scholar
Fearon, E. R. & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell 61, 759767..CrossRefGoogle ScholarPubMed
Foss, F. M., Veillette, A., Sartor, O., Rose, N. & Bolen, J. B. (1989). Alterations in the expression of pp60c-src and p56lck associated with butyrate-induced differentiation of human colon carcinoma cells. Oncogene Research 5, 1323..Google ScholarPubMed
Frankel, W. L., Lew, J., Su, B., Bain, A., Klurfeld, D., Einhorn, E., MacDermott, R. P. & Rombeau, J. L. (1994). Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology 106, 375380..CrossRefGoogle ScholarPubMed
Freeman, H. J. (1986). Effects of differing concentrations of sodium butyrate on 1,2-dimethylhydrazine-induced rat intestinal neoplasia. Gastroenterology 91, 596602..CrossRefGoogle Scholar
Friedel, D. & Levine, G. M. (1992). Effect of short-chain fatty acids on colonic function and structure. Journal of Parenteral and Enteral Nutrition 16, 14..CrossRefGoogle ScholarPubMed
Gibson, P. R., Moeller, I., Kagelari, O., Folino, M. & Young, G. P. (1991). Contrasting effects of butyrate on differentiation of neoplastic and non-neoplastic colonic epithelial cells. Journal of Gastroenterology and Hepatology 7, 165172..CrossRefGoogle Scholar
Gibson, P. R. & Pavli, P. (1992). Pathogenic factors in inflammatory bowel disease. I. Ulcerative colitis. Digestive Diseases and Sciences 10, 1728..CrossRefGoogle ScholarPubMed
Glotzer, D. J., Glick, M. E. & Goldman, H. (1981). Ptitis and colitis following diversion of the fecal stream. Gastroenterology 80, 438441..CrossRefGoogle Scholar
Goodenough, R. D. & Wolfe, R. R. (1984). Effect of total parenteral nutrition on free fatty acid metabolism in burn patients. Journal of Parenteral and Enteral Nutrition 8, 357360..CrossRefGoogle Scholar
Goodlad, R. A. & Write, N. A. (1983). Effects of addition of kaolin or cellulose to an elemental diet on intestinal cell proliferation in the rat. British Journal of Nutrition 50, 9198..CrossRefGoogle ScholarPubMed
Gordon, E. E. & Duger, J. (1975). Experimental hyperosmolar diabetic syndrome. Ketogenic response to medium-chain triglycerides. Diabetes 24, 301..CrossRefGoogle ScholarPubMed
Gregoire, R., Yeung, K. S., Stadler, J., Stern, H. S., Kashtan, H., Neil, G. & Bruce, W. R. (1991). Effect of high-fat and low-fiber meals on the cell proliferation activity of colorectal mucosa. Nutrition and Cancer 15, 2126..CrossRefGoogle ScholarPubMed
Guillemot, F., Colombel, J. F., Neut, C., Verplanck, N., Lecomte, M., Romond, C., Paris, J. C. & Cortot, A. (1991). Treatment of diversion colitis by short-chain fatty acids. Diseases of the Colon and Rectum 34, 861864..CrossRefGoogle ScholarPubMed
Guisard, D. & Debry, G. (1972). Metabolic effects of a medium chain triglyceride emulsion injected intravenously in man. Hormone and Metabolic Research 4, 509..CrossRefGoogle ScholarPubMed
Hamawy, K. J., Georgieff, M., Pomposelli, J. J., Bistrian, B. R. & Blackburn, G. (1985a). The effect of thermal injury on oxidation and distribution of various lipid emulsions. Journal of Parenteral and Enteral Nutrition 9, 114..Google Scholar
Hamawy, K. J., Moldawer, L. L., Georgieff, M., Valicenti, A. J., Babayan, V. K., Bistrian, B. R. & Blackburn, G. L. (1985b). The effect of lipid emulsions on reticuloendothelial system function in the injured animal. Journal of Parenteral and Enteral Nutrition 9, 559565..CrossRefGoogle ScholarPubMed
Harig, J. M., Soergel, K. H., Komorowski, R. A. & Wood, C. M. (1989). Treatment of diversion colitis with short-chain fatty acid irrigation. New England Journal of Medicine 320, 2328..CrossRefGoogle ScholarPubMed
Hashim, S. A., Arteaga, A. & Van Itallie, T. B. (1960). Effect of saturated medium-chain triglycerides on serum lipids in man. Lancet i, 105..Google Scholar
Hashim, S. A., Roholt, H. B. & Van Itallie, T. B. (1962). Pancreatogenous steatorrhea treated with medium-chain triglycerides. Clinical Research 10, 394..Google Scholar
Hashim, S. A. & Tantibhedyangkul, P. (1987). Medium chain triglyceride in early life: effects on growth of adipose tissue. Lipids 22, 429434..CrossRefGoogle ScholarPubMed
Herschel, D. A., Argenzio, R. A., Southworth, M. & Stevens, C. E. (1981). Absorption of volatile fatty acids, Na and H2O by the colon of the dog. American Journal of Veterinary Research 42, 11181124..Google ScholarPubMed
Herz, F., Schermer, A., Halwer, M. & Bogart, L. H. (1981). Alkaline phosphatase in HT-29, a human colon cancer cell line: influence of sodium butyrate and hyperosmolality. Archives of Biochemistry and Biophysics 210, 581591..CrossRefGoogle ScholarPubMed
Higgins, P. J. (1989). Antigenic and cytoarchitectural ‘markers’ of differentation pathways in normal and malignant colonic epithelial cells. In Molecular Biology of Colon Cancer, pp. 112132 [Augenlicht, L. H. editors]. Boca Raton, FL: CRC Press..Google Scholar
Hill, J. O., Peters, J. C., Yang, D., Sharp, T., Kaler, M., Abumrad, N. N. & Greene, H. L. (1989). Thermogenesis in humans during overfeeding with triglycerides. Metabolism 38, 641648..CrossRefGoogle ScholarPubMed
Hogben, C., Tocco, D., Brodie, B. B. & Schanker, L. (1959). On the mechanism of intestinal absorption of drugs. Journal of Pharmacology and Experimental Therapeutics 125, 275282..Google ScholarPubMed
Holtug, K., Rasmussen, H. S. & Mortensen, P. B. (1992). An in vitro study of short-chain fatty acid concentrations, production and absorption in pig (Sus scrofa) colon. Comparative Biochemistry and Physiology 103, 189197..CrossRefGoogle Scholar
Hoverstad, T. (1986). Standards of short-chain fatty acid absorption in man. Scandinavian Journal of Gastroenterology 21, 257260..CrossRefGoogle Scholar
Howe, G. R., Benito, E., Castelleto, R., Cornée, J., Estève, J., Gallagher, R. P., Iscovich, J. M., Deng-ao, J., Kaaks, R., Kune, G. A., Kune, S., L'Abbé, K. A., Lee, H. P., Lee, M., Miller, A. B., Peters, R. K., Potter, J. D., Riboli, E., Siattery, M. L., Trichopoulos, D., Tuyns, A., Tzonou, A., Whittemore, A. S., Wu-Williams, A. H. & Shu, Z. (1992). Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. Journal of the National Cancer Institute 84, 18871896..CrossRefGoogle ScholarPubMed
Ito, F. & Chou, J. Y. (1984). Induction of placental alkaline phosphatase biosynthesis of sodium butyrate. Journal of Biological Chemistry 259, 25262530..CrossRefGoogle ScholarPubMed
Jacobs, L. R. (1983). Effects of dietary fiber on mucosal growth and cell proliferation in the small intestine of the rat: a comparison of oat bran, pectin and guar with total fiber deprivation. American Journal of Clinical Nutrition 37, 954960..CrossRefGoogle Scholar
Jacobs, L. R. (1986). Relationship between dietary fiber and cancer: metabolic, physiologic, and cellular mechanism. Proceedings of the Society of Experimental Biology and Medicine 182, 299310..CrossRefGoogle Scholar
Jacobs, L. R. (1988). Role of dietary factors in cell replication and colon cancer. American Journal of Clinical Nutrition 48, 775779..CrossRefGoogle ScholarPubMed
Jacobs, L. R. (1990). Influence of soluble fibers on experimental colon carcinogenesis. In Dietary Fiber: Basic and Clinical Aspects, pp. 389403 [Vahouny, G. B. and Kritchevsky, D. editors]. New York: Plenum Press..CrossRefGoogle Scholar
Jacobs, M. H. (1940). Some aspects of cell permeability to weak electrolytes. Cold Spring Harbor Symposia on Quantitative Biology 8, 3039..CrossRefGoogle Scholar
Janne, P., Carpenter, Y. & Willems, G. (1977). Colonic mucosal atrophy induced by a liquid elemental diet in rats. American Journal of Digestive Diseases 22, 808812..CrossRefGoogle ScholarPubMed
Jass, J. R. (1985). Diet, butyric acid and differentiation of gastrointestinal tract tumours. Medical Hypotheses 18, 113118..CrossRefGoogle ScholarPubMed
Jiang, Z., Zhang, S., Wang, X., Yang, N., Zhu, Y. & Wilmore, D. (1993). A comparison of medium-chain and long-chain triglycerides in surgical patients. Annals of Surgery 217, 175184..CrossRefGoogle ScholarPubMed
Kameyama, J., Narui, H., Imui, M. & Sasaki, I. (1984). Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku Journal of Experimental Medicine 143, 253254..CrossRefGoogle ScholarPubMed
Kashtan, H., Stern, H. S., Jenkins, D. J. A., Jenkins, A. L., Thompson, L. U., Ha, K., Marcon, N., Minkin, S. & Bruce, W. R. (1992). Colonic fermentation and markers of colorectal-cancer risk. American Journal of Clinical Nutrition 55, 723728..CrossRefGoogle ScholarPubMed
Kim, Y. S., Tsao, D., Siddiqui, B., Whitehead, J. S., Arnstein, P., Bennette, J. & Hicks, J. (1980). Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer 45, 11851192..3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Klein, S. & Miles, J. M. (1994). Metabolic effects of long-chain and medium-chain triglyceride emulsions in humans. Journal of Parenteral and Enteral Nutrition 18, 396397..CrossRefGoogle ScholarPubMed
Knudsen, K. E., Jensen, B. B. & Hansen, I. (1993). Oat bran but not a β-glucan enriched oat fraction enhances butyrate production in the large intestine of pigs. Journal of Nutrition 123, 12351247..CrossRefGoogle Scholar
Koruda, M. J., Rolandelli, R. H., Bliss, D. Z., Hastings, J., Rombeau, J. L. & Settle, R. G. (1990). Parenteral nutrition supplemented with short-chain fatty acids: effect on the small-bowel mucosa in normal rats. American Journal of Clinical Nutrition 51, 685689..CrossRefGoogle ScholarPubMed
Kripke, S. A., Fox, A. D., Berman, J. M., Settle, R. G. & Rombeau, J. L. (1989). Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids. Journal of Parenteral and Enteral Nutrition 13, 109116..CrossRefGoogle ScholarPubMed
Kruh, J. (1982). Effect of sodium butyrate, a new pharmacological agent, on cells in culture. Molecular Cell Biology 42, 6582..Google ScholarPubMed
Kruh, J., Defer, N. & Tichonicky, L. (1995). Effects of butyrate in cell proliferation and gene expression. In Physiological and Clinical Aspects of Short-Chain Fatty Acids, pp. 275288 [Cummings, J. H., Rombeau, J. L. & Sakata, T. editors]. Cambridge: Cambridge University Press..Google Scholar
Kruh, J., Tichonicky, L. & Defer, N. (1994). Effect of butyrate on gene expression. In Short-Chain Fatty Adds, pp. 135147 [Cummings, J., Binder, H. J. & Soergel, K. editors]. Boston: Kluwer Academic Publishers..Google Scholar
Kvietys, P. R. & Granger, D. N. (1981). Effects of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80, 962969..CrossRefGoogle ScholarPubMed
Lanser, M. & Saba, T. (1981). Neutrophil-mediated lung localization of bacteria: a mechanism for pulmonary injury. Surgery 90, 473481..Google ScholarPubMed
Lee, D. K., Chapkin, R. S. & Lupton, J. R. (1993). Dietary fat and fiber modulate colonic cell proliferation in an interactive site-specific manner. Nutrition and Cancer 20, 107118..CrossRefGoogle Scholar
Lipkin, M. (1988). Biomarkers of increased susceptibility to gastrointestinal cancer: new application to studies of cancer prevention in human subjects. Cancer Research 48, 235245..Google ScholarPubMed
Longo, W. E., Ballantyne, G. H., Savoca, P. E., Adrian, T. E., Blichik, A. J. & Modlin, I. M. (1991). Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon. Scandinavian Journal of Gastroenterology 26, 442448..CrossRefGoogle ScholarPubMed
Luciano, L., Reale, E., Rechkemmer, G. & v. Engelhardt, W. (1984). Structure of zonulae occludentes and permeability of epithelium to short-chain fatty acid in the proximal and distal colon of guinea pig. Journal of Membrane Biology 82, 145156..CrossRefGoogle Scholar
Lupton, J. R. & Kurtz, P. P. (1993). Relationship of colonic luminal short-chain fatty acids and pH to in vivo ceil proliferation in rats. Journal of Nutrition 123, 15221530..CrossRefGoogle Scholar
Lutz, T. & Scharrer, E. (1991). Effect of short-chain fatty acids on calcium absorption by the rat. Experimental Physiology 76, 615618..CrossRefGoogle ScholarPubMed
Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. (1992). Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology 72, 5464..CrossRefGoogle ScholarPubMed
Macfarlane, G. T., Gibson, G. R., Macfarlane, S. (1994). Short-chain fatty acid and lactate production by human intestinal bacteria grown in batch and continuous culture. In Short-Chain Fatty Acids, pp. 4460 [Cummings, J., Binder, H. J. & Soergel, K. editors]. Boston: Kluwer Academic Publishers..Google Scholar
McIntyre, A., Gibson, P. R. & Young, G. P. (1993). Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34, 386391..CrossRefGoogle ScholarPubMed
McIntyre, A., Young, G. P., Taranto, T., Gibson, P. R. & Ward, P. B. (1991). Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology 101, 12741281..CrossRefGoogle ScholarPubMed
McNeil, N. I. (1984). Contribution of the large intestine to energy supplies in man. American Journal of Clinical Nutrition 39, 338342..Google ScholarPubMed
McNeil, N. I., Cummings, J. H. & James, W. P. T. (1978). Short-chain fatty acid absorption by the human large intestine. Gut 19, 819822..CrossRefGoogle ScholarPubMed
Maczulak, A. E., Wolin, M. J. & Miller, T. L. (1983). Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Applied and Environmental Microbiology 59, 657662..CrossRefGoogle Scholar
Magnussen, K., Rönnholm, H., Sandberg, G., Lindmark, L., Enekull, U. & Ekman, L. (1986). Effect of structured triglycerides on protein synthesis in liver and muscle tissue during TPN in an injured rat model. Clinical Nutrition 5, 141..Google Scholar
Maiz, A., Yamazaki, K., Sobrado, J., Babayan, V. K., Moldawer, L. L., Bistrian, B. R. & Blackburn, G. (1984a). Hypocaloric lipid emulsions and amino acid metabolism in injured rats. Journal of Parenteral and Enteral Nutrition 8, 361..Google Scholar
Maiz, A., Yamazaki, K., Sobrado, J., Babayan, V. K., Moldawer, L. L., Bistrian, B. R. & Blackburn, G. (1984b). Protein metabolism during total parenteral nutrition in injured rats using medium-chain triglycerides. Metabolism 33, 901904..CrossRefGoogle ScholarPubMed
Marty, J. & Vernay, M. (1984). Absorption and metabolism of the volatile fatty acids in the hind gut of the rabbit. British Journal of Nutrition 51, 265277..CrossRefGoogle ScholarPubMed
Mascioli, E. A., Babayan, V. K., Bistrian, B. R. & Blackburn, G. (1988). Novel triglycerides for special medical purpose. Journal of Parenteral and Enteral Nutrition 12, 127S-132S..CrossRefGoogle Scholar
Miles, J. M. (1991). Intravenous fat emulsions in nutritional support. Current Opinion in Gastroenterology 7, 306311..CrossRefGoogle Scholar
Miles, J. M., Cattalini, M., Sharbrough, F. W., Wold, L. E., Wharen, R. E., Gerich, J. E. & Haymond, M. W. (1991). Metabolic and neurologic effects of an intravenous medium-chain triglyceride emulsion. Journal of Parenteral and Enteral Nutrition 15, 3741..CrossRefGoogle ScholarPubMed
Mitchell, M. E. (1978). Carnitine metabolism in human subjects. I: normal metabolism. American Journal of Clinical Nutrition 31, 293306..CrossRefGoogle ScholarPubMed
Mok, K. T., Maiz, A., Yamazaki, K., Sobrado, J., Babayan, V., Moidavver, L., Bistrian, B. & Blackburn, G. (1984). Structured medium-chain and long-chain emulsions are superior to physical mixtures in sparing body protein in the burned rat. Metabolism 33, 910915..CrossRefGoogle ScholarPubMed
Morita, A., Tsao, D. & Kim, Y. S. (1982). Effect of sodium butyrate on alkaline phosphatase in HRT-18. A human rectal cancer cell line. Cancer Research 42, 45404545..Google ScholarPubMed
Mortensen, P. B., Holtug, K., Bonnen, H. & Clausen, M. R. (1990). The degradation of amino acids. Proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology 98, 353360..CrossRefGoogle Scholar
Moyer, E., Wennberg, A. & Ekman, L. (1989). A metabolic comparison between MCT. MCT/LCT and structured lipids. Clinical Nutrition 8, 83..Google Scholar
Murray, R. D., McClung, H. J., Li, B. U. & Ailabouni, A. (1987). Short-chain fatty acid profile in the colon of newborn piglets using fecal water analysis. Pediatric Research 22, 720724..CrossRefGoogle ScholarPubMed
Nyman, M. & Asp, N. G. (1982). Fermentation of dietary fibre components in rat intestinal tract. British Journal of Nutrition 47, 357366..CrossRefGoogle ScholarPubMed
Otaka, M., Singhal, A. & Hakomori, S. (1989). Antibody-mediated targeting of differentiation inducers to tumor cells: inhibition of colonic cancer cell growth in vitro and in vivo. Biochemical and Biophysical Research Communications 158, 202208..CrossRefGoogle ScholarPubMed
Parker, M., de Haan, J. & Gevers, W. (1985). DNA hypermethylation in sodium butyrate-treated WI-38 fibroblasts. Journal of Biological Chemistry 261, 27862790..CrossRefGoogle Scholar
Pressman, B. C. & Lardy, H. A. (1956). Effects of surface active agents on the latent ATPase of mitochondria. Biochimica el Biophysica Acta 21, 458466..CrossRefGoogle Scholar
Rajendran, V. M., Binder, H. J. (1994). Short-chain fatty acid stimulation of electroneutral Na-Cl absorption: role of apical SCFA-HCO3 and SCFA-Cl exchanges. In Short-Chain Fatty Acids, pp. 104116 [Cummings, J., Binder, H. J. & Soergel, K. editors]. Boston: Kluwer Academic Publishers..Google Scholar
Rasmussen, H. S., Holtug, K., Ynggård, C. & Mortensen, P. B. (1988). Faecal concentrations and production rates of short-chain fatty acids in normal neonates. Acta Paediathca Scandinavica 77, 365368..CrossRefGoogle ScholarPubMed
Rastl, E. & Swetly, P. (1978). Expression of poly-(adenosine diphosphate-ribose) polymerase activity in erythroleukemic mouse cells during cell cycle and erythropoietic differentiation. Journal of Biological Chemistry 253, 43334340..CrossRefGoogle ScholarPubMed
Rechkemmer, G. & v. Engelhardt, W. (1988). Concentration-and pH-dependence of short-chain fatty acid absorption in the proximal and distal colon of guinea pig. Comparative Biochemistry and Physiology 91A, 569663..Google Scholar
Rechkemmer, G., Rönnau, K. & v. Engelhardt, W. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comparative Biochemistry and Physiology 90A, 563568..CrossRefGoogle Scholar
Rechkemmer, G., Wahl, M., Kuschinsky, W. & v. Engelhardt, W. (1986). pH-microclimate at the luminal surface of the intestinal mucosa of guinea pigs. Pflügers Archiv-European Journal of Physiology 407, 3344..CrossRefGoogle Scholar
Reeves, R. & Dserjesi, P. (1979). Sodium butyrate induces new gene expression in Friend erythroleukemic cells. Journal of Biological Chemistry 254, 43834390..CrossRefGoogle ScholarPubMed
Robinson, A. M. & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60, 143187..CrossRefGoogle ScholarPubMed
Rodriguez, N., Schwenk, W. F., Beaufrere, B., Miles, J. M. & Haymond, M. W. (1986). Trioctanoin infusion increases in vivo leucine oxidation: a lesson in isotope modeling. American Journal of Physiology 251, E343E348..Google ScholarPubMed
Roediger, W. E. W. (1980 a). Anaerobic bacteria support the metabolic welfare of the colonic mucosa in man. Gut 21, 793..CrossRefGoogle Scholar
Roediger, W. E. W. (1980 b). The colonic epithelium in ulcerative colitis: an energy deficient disease?. Lancet ii, 712715..CrossRefGoogle Scholar
Roediger, W. E. W. (1982). Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424429..CrossRefGoogle ScholarPubMed
Roediger, W. E., Lawson, M. J., Kwok, V., Grant, A. K. & Pannall, P. R. (1984). Colonic bicarbonate output as a test of disease activity in ulcerative colitis. Journal of Clinical Pathology 37, 704707..CrossRefGoogle ScholarPubMed
Roediger, W., Schapel, G., Lawson, M., Radcliffe, B. & Nance, S. (1986). Effect of 5-aminosalicylic acid (5-ASA) and other salicylates on short-chain fat metabolism in the colonic mucosa. Biochemical Pharmacology 35, 221225..CrossRefGoogle ScholarPubMed
Rolandelli, R. H., Koruda, M. J., Settle, R. & Rombeau, J. L. (1986). Effects of intraluminal infusion of short-chain fatty acids on the healing of colonic anastomosis in the rat. Surgery 100, 198205..Google ScholarPubMed
Rombeau, J. L., Kripke, S. A., Settle, R. G. (1990). Short-chain fatty acids: production, absorption, metabolism, and intestinal effects. In Dietary Fiber: Basic and Clinical Aspects, pp. 317339 [Vahouny, G. B. & Kritchevsky, D. editors]. New York: Plenum Press..CrossRefGoogle Scholar
Rönnau, K., Guth, D. & v. Engelhardt, W. (1989). Absorption of dissociated and undissociated short-chain fatty acids across the colonic epithelium of guinea pig. Quarterly Journal of Experimental Physiology 74, 511519..CrossRefGoogle ScholarPubMed
Röbsamen, K., Hume, I. D. & v. Engelhardt, W. (1982). Physiology of the rock hyrax. Comparative Biochemistry and Physiology 72, 271277..CrossRefGoogle Scholar
Ruppin, H., Bar-Mei, S., Soergel, K., Wood, C. M. & Schmitt, M. G. Jr (1980). Absorption of short-chain fatty acids by the colon. Gastroenterology 78, 15001507..CrossRefGoogle ScholarPubMed
Sailer, D. & Berg, G. (1974). Medium-chain triglycerides clinical physiology and application. Zeitschrift für Ernahrungswissenschaft 13, 617..CrossRefGoogle ScholarPubMed
Sailer, D. & Muller, M. (1981). Medium chain trigiycerides in parsnteral nutrition. Journal of Parenteral and Enteral Nutrition 5, 115..CrossRefGoogle ScholarPubMed
Sakata, T. (1984). Influence of short-chain fatty acids on epithelial cell division of digestive tract. Journal of Experimental Physiology 69, 639648..CrossRefGoogle ScholarPubMed
Sakata, T. (1987). Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition 58, 95101..CrossRefGoogle ScholarPubMed
Sakata, T. (1988). Depression of intestinal epithelial cell production rate by hindgut bypass in rats. Scandinavian Journal of Gastroenterology 23, 12001202..CrossRefGoogle ScholarPubMed
Sakata, T. & v. Engelhardt, W. (1983). Stimulatory effects of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comparative Biochemistry and Physiology 74A, 459462..CrossRefGoogle Scholar
Sandberg, G., Enekull, U. & Ekman, L. (1985). Leucine oxidation and energy metabolism during administration of fat emulsions with different types of triglycerides. Clinical Nutrition 5, 111..Google Scholar
Sandström, R., Hyitander, A., Körner, U. & Lundholm, K. (1993). Structured triglycerides to postoperative patients: safely and tolerance study. Journal of Parenteral and Enteral Nutrition 17, 153157..CrossRefGoogle Scholar
Schafer, W. R., Kim, R., Sterne, R., Thorne, J., Kim, S. & Rine, J. (1989). Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245, 379385..CrossRefGoogle ScholarPubMed
Scheppach, W. (1994). Short-chain fatty acids improve epithelia in ulcerative colitis? Speculation on mechanisms. In Short-chain Fatty Acids, pp. 206213 [Cummings, J., Binder, H. J. & Soergel, K. editors]. Boston: Kluwer Academic Publishers..Google ScholarPubMed
Scheppach, W. & Bartram, H.-P. (1993). Experimental evidence for and clinical implications of fiber and artificial enteral nutrition. Nutrition 9, 399405..Google ScholarPubMed
Scheppach, W., Bartram, P., Richter, A., Richter, F., Dusel, G., Liepold, H., Hofstetter, G., Ruthlein, J. & Kasper, H. (1992a). Effect of short-chain fatty acids on the human colonic mucosa in vivo. Journal of Parenteral and Enteral Nutrition 16, 43–18.CrossRefGoogle Scholar
Scheppach, W., Burghardt, W., Bartram, P. & Kasper, H. (1990). Addition of dietary fiber to liquid formula diets: the pros and the cons. Journal of Parenteral and Enteral Nutrition 14, 204209..CrossRefGoogle ScholarPubMed
Scheppach, W., Sommer, H., Kirchner, T., Paganelli, G. M., Bartram, P., Christl, S., Richter, F., Dusel, G. & Kasper, H. (1992b). Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 5156..CrossRefGoogle ScholarPubMed
Sellin, J. H., De Soignie, R. & Burlingame, S. (1993). Segmental differences in short-chain fatty acids transport in rabbit colon. Effect of pH and Na. Journal of Membrane Biology 136, 147158..CrossRefGoogle ScholarPubMed
Shore, P. A., Brodie, B. B. & Hobgen, C. A. M. (1957). The gastric secretion of drugs: a pH partition hypothesis. Journal of Pharmacology 119, 361369..Google ScholarPubMed
Silk, D. B. A. (1989). Fibre and enteral nutrition. Gut 30, 246264..CrossRefGoogle ScholarPubMed
Sobrado, J., Moldawer, L., Pomposelli, J., Mascioli, E., Babayan, V., Bistrian, B. & Blackburn, G. (1985). Lipid emulsions and reticuloendothelial system function in healthy and burned guinea pigs. American Journal of Clinical Nutrition 42, 855863..CrossRefGoogle ScholarPubMed
Souleimani, A. & Asselin, C. (1992). Regulation of proto-oncogene expression by sodium butyrate in the human colon carcinoma cell line CaCo-2. Gastroenterology 102, A400..Google Scholar
Stein, T. P., Fried, R. C., Torosian, M. H., Leskiw, M. J., Schluter, M. D., Settle, R. G. & Buzby, G. P. (1986). Comparison of glucose, LCT and LCT plus MCT as calorie sources for parenterally nourished septic rats. American Journal of Physiology 250, E312E318..Google ScholarPubMed
Stein, T. P., Presti, M. E., Leskiw, M. J., Torosian, M. E., Settle, R. G., Buzby, G. P. & Schluter, M. D. (1984). Comparison of glucose, LCT and LCT plus MCT as calorie sources for parenterally nourished rats. American Journal of Physiology 246, E277E287..Google ScholarPubMed
Stevens, C. E. (1988). Comparative Physiology of the Vertebrate Digestive System. Cambridge: Cambridge University Press..Google Scholar
Stoddart, J. H., Lane, M. A. & Niles, R. M. (1989). Sodium butyrate suppresses the transforming activity N-ras oncogene in human colon carcinoma cells. Experimental Cell Research 184, 1627..CrossRefGoogle ScholarPubMed
Teo, T. C., DeMichele, S. J. & Selleck, K. (1989). Administration of structured lipid composed of MCT and fish oil reduced net protein catabolism in enterally fed burned rats. Annals of Surgery 210, 100107..CrossRefGoogle ScholarPubMed
Thomson, A. B. R. (1978). Intestinal absorption of lipids: influence of the unstirred water layer and bile acid micelle. In Disturbances in Lipid and Lipoprotein Metabolism, pp. 2955 [Dietsch, J. M., Gotto, Y. A. M. & Ontko, J. A. editors]. Bethesda, MD: American Physiological Society..Google Scholar
Titgemeyer, E. C., Bourquin, L. D., Fancy, G. C. & Garleb, K. A. (1991). Fermentability of various fiber sources by human fecal bacteria in vivo. American Journal of Clinical Nutrition 53, 418424..CrossRefGoogle Scholar
Topping, D. L., Illman, R. J., Clarke, J. M., Trimble, R. P., Jackson, K. A. & Marsono, Y. (1993). Dietary fat and fiber alter large bowel and portal venous volatile fatty acids and plasma cholesterol but not biliary steroids in pigs. Journal of Nutrition 123, 133143..CrossRefGoogle Scholar
Toribara, N. W., Sack, T. L., Gum, J. R., Ho, S. B., Shively, J. E., Willson, J. K. V. & Kim, Y. S. (1989). Heterogeneity in the induction and expression of carcinoembryonic antigen-related antigens in human colon cancer cell lines. Cancer Research 49, 33213327..Google ScholarPubMed
Toscani, A., Soprano, D. R. & Soprano, K. J. (1988). Molecular analysis of sodium butyrate-induced growth arrest. Oncogene Research 3, 223238..Google ScholarPubMed
Tsao, D., Morita, A., Bella, A., Luu, P. & Kim, Y. S. (1982). Differential effects of sodium butyrate, dimethylsulfoxide, retinoic acid on membrane-associated antigen, enzymes and glycoproteins of human rectal adenocarcinoma cells. Cancer Research 42, 10521058..Google ScholarPubMed
Umesaki, Y., Yajima, T., Yokokura, T. & Mutai, M. (1979). Effect of organic acid absorption on bicarbonate transport in rat colon. Pflügers Archiv-European Journal of Physiology 379, 4347..CrossRefGoogle ScholarPubMed
Van Munster, I. P. & Nagengast, F. M. (1993). The role of carbohydrate fermentation in colon cancer prevention. Scandinavian Journal of Gastroenterology 28, 8086..CrossRefGoogle Scholar
Vernay, M. (1987). Effects of plasma aldosterone on butyrate absorption and metabolism in the rabbit proximal colon. Comparative Biochemistry and Physiology 86, 657662..CrossRefGoogle ScholarPubMed
Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. (1978). Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histone H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proceedings of the National Academy of Sciences, USA 75, 2239..CrossRefGoogle ScholarPubMed
Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., Nakamura, Y., White, R., Smits, A. M. & Bos, J. L. (1988). Genetic alterations during colorectal-rumor development. New England Journal of Medicine 319, 525..CrossRefGoogle ScholarPubMed
Walter, A. & Gutknecht, J. (1984). Monocarboxylic acid permeation bilayer membranes. Journal of Membrane Biology 77, 255264..CrossRefGoogle ScholarPubMed
Wan, J. M.-F., Teo, T. C., Babayan, V. K. & Blackburn, G. L. (1988). Invited comment: lipids and the development of immune dysfunction and infection. Journal of Parenteral and Enteral Nurrition 12, 43S-52S..Google ScholarPubMed
Wargovich, M. J., Harris, C., Chen, C. D., Palmer, C., Steele, V. E. & Kelloff, G. J. (1992). Growth kinetics and chemoprevention of aberrant crypts in the rat colon. Journal of Cell Biochemistry 16G, 5154..CrossRefGoogle ScholarPubMed
Weaver, G. A., Krause, J. A., Miller, T. L. & Wolin, M. J. (1988). Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29, 15391543..CrossRefGoogle ScholarPubMed
Weaver, G. A., Krause, J. A., Miller, T. L. & Wolin, M. J. (1992). Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. American Journal of Clinical Nutrition 55, 7077..CrossRefGoogle ScholarPubMed
Weissman, C., Chiolero, R., Askanazi, J., Gil, K. M., Elwyn, D. & Kinney, J. M. (1988). Intravenous infusion of a medium-chain triglyceride-enriched lipid emulsion. Critical Care Medicine 16, 11831190..CrossRefGoogle ScholarPubMed
Whitehead, R. H., Young, G. P. & Bhathal, P. S. (1986). Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut 27, 14571463..CrossRefGoogle ScholarPubMed
Wiley, J. H. & Leveille, G. A. (1973). Metabolic consequences of dietary medium chain triglycerides in the rat. Journal of Nutrition 113, 829835..CrossRefGoogle Scholar
Willson, J. K. V. (1989). Biology of large bowel cancer. Hematology Oncology Clinics of North America 3, 1934..CrossRefGoogle ScholarPubMed
Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G. & Lowy, D. R. (1984). The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583586..CrossRefGoogle ScholarPubMed
Windmeuller, H. G. & Spaeth, A. E. (1978). Identification of ketone bodies and glutamine as the major respiratory fuels In vivo for postoperative rat small intestine. Journal of Biological Chemistry 253, 6976..CrossRefGoogle Scholar
Wolfram, G., Hailer, S. & Rett, K. (1985). MCT/LCT or LCT emulsion and skeletal muscle-effects on lipoprotein. Clinical Nutrition 4S, 6..Google Scholar
Wolin, M. J. (1981). Fermentation in the rumen and human large intestine. Science 213, 14631468..CrossRefGoogle ScholarPubMed
Wrong, O. M. (1981). Carbohydrates. The Large Intestine: Its Role in Mammalian Nutrition and Homeostasis, pp. 2021 [Wrong, O. M., Edmunds, C. J. & Chadwick, V. S. editors]. New York: Halsted Press 113114.Google Scholar
Yajima, T. (1985). Contractile effect of short-chain fatty acids on the isolated colon of the rat. Journal of Physiology 368, 667678..CrossRefGoogle ScholarPubMed
Yeh, Y. Y., Klein, L. B. & Zee, P. (1978). Long and medium chain triglycerides increase plasma concentrations of ketone bodies in suckling rats. Lipids 3, 566571..CrossRefGoogle Scholar
Yeh, Y. Y. & Zee, P. (1976). Relation of ketosis to metabolic changes induced by medium chain triglyceride feeding in rats. Journal of Nutrition 106, 58..CrossRefGoogle ScholarPubMed
Young, G. P. (1990). Dietary fibre in the prevention of colorectal cancer: lessons from standards in animal models. Proceedings of the Nutrition Society of Australia 15, 112119..Google Scholar
Young, G. P. (1991). Butyrate and the molecular biology of the large bowel. In Short Chain Fatty Acids: Metabolism and Clinical Importance. Report of the Tenth Ross Conference on Medical Research, pp. 3945 [Rombeau, J. L., Cummings, J. H. & Sakata, T. editors]. Columbus, OH: Ross Laboratories..Google Scholar
Young, G. P., Gibson, P. R. (1994). Butyrate and colorectal cancer cell. In Short-Chain Fatty Acids, pp. 148160 [Cummings, J., Binder, H. J. & Soergel, K. editors]. Boston: Kluwer Academic Publishers..Google Scholar
Young, G. P., Gibson, P. R. (1995). Butyrate and the human cancer cell. In Physiological and Clinical Aspects of Short-chain Fatty Acids, pp. 319336 [Cummings, J. H., Rombeau, J. L. & Sakata, T. editors]. Cambridge: Cambridge University Press..Google Scholar
Young, G. P., Macrae, F. A., Gibson, P. R., Alexeyeff, M. & Whitehead, R. (1992). Brush border hydrolases in normal and neoplastic colonic epithelium. Journal of Gastroenterology and Hepatology 7, 347357.CrossRefGoogle ScholarPubMed