Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:22:13.866Z Has data issue: false hasContentIssue false

The use of 14C-labelled substrates to study plant cell wall breakdown in the gastrointestinal tract

Published online by Cambridge University Press:  28 February 2007

Callum J. Buchanan
Affiliation:
Institute of Cell and Molecular Biology, The University of Edinburgh, King's Building, EdinburghEH9 3JH
Stephen C. Fry
Affiliation:
Institute of Cell and Molecular Biology, The University of Edinburgh, King's Building, EdinburghEH9 3JH
Martin A. Eastwood
Affiliation:
Gastrointestinal Unit, Department of Medicine, Western General Hospital, The University of Edinburgh, EdinburghEH4 2XU
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
‘The nutritional consequences of complex carbohydrates’ Symposium 3
Copyright
Copyright © The Nutrition Society 1996

References

Bonhomme-Florentin, A. (1988). Degradation of hemicellulose and pectin by horse caecum contents. British Journal of Nutrition 60, 185192.CrossRefGoogle ScholarPubMed
Brydon, W. G., Merrick, M. V. & Hannan, J. (1987). Absorbed dose from 14C xylose and 14C mannose. British Journal of Radiology 60, 563566.CrossRefGoogle Scholar
Buchanan, C. J., Fry, S. C. & Eastwood, M. A. (1994 a). Metabolism and fate of dietary (U-14C)-labelled spinach cell walls in the rat. Journal of the Science of Food and Agriculture 64, 135140.CrossRefGoogle Scholar
Buchanan, C. J., Fry, S. C. & Eastwood, M. (1994 b). The metabolism and fate of [methyl-14C] and [uronate-6-14C]pectin-labelled dietary plant cell walls in the rat. Journal of the Science of Food and Agriculture 66, 163173.CrossRefGoogle Scholar
Buchanan, C. J., Fry, S. C. & Eastwood, M. (1995 a). Metabolism of dietary (acetyl-I-14C)-plant cell walls in the rat intestine. Journal of the Science of Food and Agriculture 67, 367374.CrossRefGoogle Scholar
Buchanan, C. J., Fry, S. C. & Eastwood, M. (1995 b). In vivo breakdown of dietary [methyl-14C] and [uronate-14C]pectin labelled spinach cell walls by rat intestinal micro-organisms and incorporation of 14C into host tissues. Journal of the Science of Food and Agriculture 68, 175185.CrossRefGoogle Scholar
Buchanan, C. J., Wallace, G., Fry, S. C. & Eastwood, M. A. (1996). In vivo release of 14C-labelled phenolic groups from intact dietary spinach cell walls during passage through the rat intestine. Journal of the Science of Food and Agriculture 71, 459469.3.0.CO;2-H>CrossRefGoogle Scholar
Bugaut, M. & Bentéjac, M. (1993). Biological effects of short-chain fatty acids in nonruminant mammals. Annual Review of Nutrition 13, 217241.CrossRefGoogle ScholarPubMed
Carryer, P. W., Brown, M. L., Malagelada, J.-R., Carlson, G. L. & McCall, J. T. (1982). Quantification of the fate of dietary fiber in humans by a newly developed radiolabeled fiber marker. Gastroenterology 82, 13891394.CrossRefGoogle ScholarPubMed
Chesson, A., Stewart, C. S. & Wallace, R. J. (1982). Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Applied and Environmental Microbiology 44, 597603.CrossRefGoogle ScholarPubMed
Cummings, J. H. & Macfarlane, G. T. (1991). The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology 70, 443459.CrossRefGoogle ScholarPubMed
Eastwood, M. A., Brydon, W. G. & Anderson, D. M. W. (1986). The effect of polysaccharide composition and structure of dietary fibers in caecal fermentation and fecal excretion. American Journal of Clinical Nutrition 44, 5155.CrossRefGoogle ScholarPubMed
Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbial Ecology 95, 163171.CrossRefGoogle Scholar
Fry, S. C. (1982). Phenolic components of the primary cell wall: feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochemistry Journal 203, 493504.CrossRefGoogle ScholarPubMed
Fry, S. C. (1983). Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157, 111123.CrossRefGoogle ScholarPubMed
Fry, S. C. (1984). Incorporation of [14C]cinnamate into hydrolase resistant components of the primary cell wall. Phytochemistry 23, 5964.CrossRefGoogle Scholar
Fry, S. C. (1988). The Growing Plant Cell Wall: Chemical and Metabolic Analysis. London: Longman.Google Scholar
Gray, D. F., Eastwood, M. A., Brydon, W. G. & Fry, S. C. (1993 b). Fermentation and subsequent disposition of 14C-1abelled plant cell wall material in the rat. British Journal of Nutrition 69, 189197.CrossRefGoogle ScholarPubMed
Gray, D. F., Fry, S. C. & Eastwood, M. A. (1993 a). Uniformly 14C-labelled plant cell walls: production, analysis and behaviour in the rat gastrointestinal tract. British Journal of Nutrition 69, 177188.CrossRefGoogle ScholarPubMed
Hartley, R. D. & Jones, E. C. (1977). Phenolic components and degradability of cell walls of grass and legume species. Phytochemistry 16, 15311534.CrossRefGoogle Scholar
Jung, H.-J. G. (1985). Inhibition of structural carbohydrate fermentation by forage phenolics. Journal of the Science of Food and Agriculture 36, 7480.CrossRefGoogle Scholar
Jung, H.-J. G. & Sahlu, T. (1986). Depression of cellulose digestion by esterified cinnamic acids. Journal of the Science of Food and Agriculture 37, 659665.CrossRefGoogle Scholar
Kato, Y & Nevins, D. J. (1985). Isolation and identification of O-(5-O-feruloyl-α-L-arabinofuranosyl)-(l→3)-O-β-D-xylopyransoyl-(1→4)-D-Xylopyranose as a component of Zea shoot cell walls. Carbohydrate Research 137, 139150.CrossRefGoogle Scholar
Kelleher, J., Walters, M. P., Srinivasan, G. R., Hart, G., Findlay, J. M. & Lowowsky, M. S. (1984). Degradation of cellulose within the gastrointestinal tract of man. Gut 25, 811815.CrossRefGoogle ScholarPubMed
McDougall, G. J., Morisson, I. M., Stewart, D. & Hillman, J. R. (1996). Plant cell walls as dietary fibre: range, structure, processing and function. Journal of the Science of Food and Agriculture 70, 133150.3.0.CO;2-4>CrossRefGoogle Scholar
Macy, J. M., Farrand, J. R. & Montgomery, L. (1982). Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology 44, 14281434.CrossRefGoogle ScholarPubMed
Martin, S. A. & Akin, D. E. (1988). Effect of phenolic monomers on the growth and β-glucosidase activity of Bacteroides ruminicola and on the carboxymethylcellulase, β-glucosidase and xylanase activities of Bacteroides succinogenes. Applied and Environmental Microbiology 54, 30193022.CrossRefGoogle ScholarPubMed
Marty, J. & Vernay, M. (1984). Absorption and metabolism of the volatile fatty acids in the hind-gut of the rabbit. British Journal of Nutrition 51, 265277.CrossRefGoogle ScholarPubMed
Miller, J. G., Buchanan, C. J., Eastwood, M. A. & Fry, S. C. (1994). Specific 14C-labelling of spinach cell walls in their methyl, acetyl or uronate residues. Carbohydrate Letters 1, 129136.Google Scholar
Miller, J. G., Buchanan, C. J., Eastwood, M. A. & Fry, S. C. (1995). The solubilisation and hydrolysis of spinach cell wall polysaccharides in gastric and pancreatic fluids. Journal of the Science of Food and Agriculture 68, 389394.CrossRefGoogle Scholar
O'Neill, M., Albersheim, P. & Darvill, A. (1990). Pectic polysaccharides. In Methods in Plant Biochemistry, vol. 2, pp. 415441 [Dey, P. M., editor]. London: Academic Press.CrossRefGoogle Scholar
Savory, C. J. (1992 a). Enzyme supplementation, degradation and metabolism of three U-14C-labelled cell wall substrates in the fowl. British Journal of Nutrition 67, 91102.CrossRefGoogle ScholarPubMed
Savory, C. J. (1992 b). Metabolic fates of U-14C-labelled monosaccharides and an enzyme treated cell wall substrate in the fowl. British Journal of Nutrition 67, 103114.CrossRefGoogle Scholar
Scheppach, W., Pomare, E. W., Elia, M. & Cummings, J. H. (1991). The contribution of the large intestine to blood acetate in man. Clinical Science 80, 177182.CrossRefGoogle ScholarPubMed
Siragusa, R. J., Cerda, J. J., Baig, M. M., Burgin, C. W. & Robbins, F. L. (1988). Methanol production from the degradation of pectin by human colonic bacteria. American Journal of Clinical Nutrition 47, 848851.CrossRefGoogle ScholarPubMed
Wallace, G. & Fry, S. C. (1994). Phenolic components of the plant cell wall. International Review of Cytology 151, 229267.CrossRefGoogle ScholarPubMed
Walters, M. P., Kelleher, J., Findlay, J. M. & Srinivasan, S. T. (1989). Preparation and characterisation of a [14C]cellulose s uitable for human metabolic studies. British Journal of Nutrition 62, 121129.CrossRefGoogle Scholar
Werch, S., Jung, R. W., Day, A. A., Friedmann, T. E. & Ivy, A. C. (1942). The decomposition of pectin and galacturonic acid by intestinal bacteria. Infectious Disease 70, 231242.CrossRefGoogle Scholar
York, W. S., Oates, J. E., Van Halbeek, H., Albersheim, P., Tiller, P. R. & Dell, A. (1988). Location of the O-acetyl substituents on a nonasaccharide repeating unit of sycamore extracellular xyloglucan. Carbohydrate Research 173, 113132.CrossRefGoogle ScholarPubMed