Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T09:13:51.010Z Has data issue: false hasContentIssue false

Vitamin D and other extracellular factors in the control of growth

Published online by Cambridge University Press:  28 February 2007

Isobel P. Braidman
Affiliation:
Department of Medicine, University of Manchester, Hope Hospital, Eccles Old Road, Salford M6 8HD
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Intracellular Calcium in the Control of Metabolism’
Copyright
Copyright © The Nutrition Society 1990

References

Bennett, A., Chen, T., Feldman, D., Hintz, R. & Rosenfeld, R. G. (1984). Characterization of insulin-like growth factor 1 receptors on cultured rat bone cells: regulation of receptor concentration by glucocorticoids. Endocrinology 115, 15771583.CrossRefGoogle ScholarPubMed
Brumbaugh, P. F. & Haussler, M. R. (1975). Specific binding of 1,25-dihydroxycholecalciferol to nuclear components of chick intestine. Journal of Biological Chemistry 250, 15881594.CrossRefGoogle Scholar
Canalis, E. & Raisz, L. G. (1980). Effect of fibroblast growth factor on cultured fetal rat calvaria. Metabolism 29, 108114.Google Scholar
Chen, T. L. & Feldman, D. (1981). Regulation of 1,25-dihydroxyvitamin D3 receptors in cultured mouse bone cells. Journal of Biological Chemistry 256, 55615566.CrossRefGoogle ScholarPubMed
Colston, K., Colston, M. J. & Feldman, D. (1981). 1,25-dihydroxyvitamin D3 and malignant melanoma. Endocrinology 108, 10831086.CrossRefGoogle ScholarPubMed
DeLuca, H. F. (1979). Recent advances in our understanding of the vitamin D-endocrine system Journal of Steriod Biochemistry 11, 3554.Google Scholar
Ernst, M. & Froesch, E. R. (1987). Osteoblast-like cells in serum-free methylcellulose medium form colonies: effects of insulin and insulin-like growth factor 1. Calcified Tissue International 40, 2734.CrossRefGoogle Scholar
Freake, H. C., Marocci, C., Iwasaki, J. & MacIntyre, I. (1981). 1,25-dihydroxyvitamin D3 Specifically binds to a human breast cancer cell line and stimulates growth. Biochemical and Biophysical Research Communications 101, 11311138.CrossRefGoogle ScholarPubMed
Gothlin, G. & Ericsson, J. L. E. (1976). The osteoclast. Clinical Orthopaedics and Related Research 120, 201231.Google Scholar
Guenther, M. L., Cecchini, M. G., Elford, P. R. & Fleisch, H. (1988). Effects of transforming growth factor β upon bone cell populations grown in monoloayer or semisolid medium. Journal of Bone and Mineral Research 3, 269278.CrossRefGoogle ScholarPubMed
Henry, H. L. (1979). Regulation of the hydroxylation of 25-hydroxyvitamin D3 in vivo and in primary cultures of chick kidney. Journal of Biological Chemistry 254, 27222729.CrossRefGoogle ScholarPubMed
Hill, D. J., Crace, C. J., Strain, A. J. & Milner, R. D. G. (1986). Regulation of amino acid uptake and DNA synthesis in isolated human fetal fibroblasts: effect of placental lactogen, somatomedin-C, MSA and insulin. Journal of Clinical Endocrinology and Metabolism 62, 753760.CrossRefGoogle ScholarPubMed
Holtrop, M. E., Co, K. A., Clark, M. B., Holick, M. F. & Anast, C. (1981). 1,25-dihydroxyvitamin D3 stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 108, 22932301.CrossRefGoogle ScholarPubMed
Kahn, A. J. & Simmons, D. J. (1975). Investigation of cell lineage in bone using a chimaera of chick and quail tissue. Nature 258, 325327.CrossRefGoogle Scholar
Manolagas, S. C., Haussler, M. R. & Deftos, L. J. (1980). 1,25-dihydroxyvitamin D3 receptor-like molecule in rat osteogenic sarcoma cell lines. Journal of Biological Chemistry 255, 44144417.CrossRefGoogle Scholar
Manolagas, S. C., Taylor, C. M. & Anderson, D. C. (1979). Highly specific binding of 1,25-dihydroxy-cholecalciferol in bone cytosol. Journal of Endocrinology 80, 3539.CrossRefGoogle Scholar
Miyaura, C., Abe, E., Honma, M., Hozumi, M., Nishii, Y. & Suda, T. (1983). Cooperative effect of 1,25-dihydroxyvitamin D3 and dexamethasone in inducing differentiation of mouse myeloid leukemic cells. Archives of Biochemistry and Biophysics 227, 379385.CrossRefGoogle Scholar
Miyaura, C., Abe, E., Kubiyashashi, T., Tanaka, H., Konno, K., Nishii, Y. & Suda, T. (1981). 1,25-dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochemical and Biophysical Research Communications 102, 937943.CrossRefGoogle ScholarPubMed
Mundy, G. R., Pfeilschrifter, J., Bonewald, L., Oreffo, J., Roodman, D. & Seyedin, S. (1988). Proceedings of the 8th International Congress of Endocrinology. Kyoto: Japan. Abstr. 5131.Google Scholar
Narbaitz, R., Stumpf, W. E., Sar, M., Huang, S. & DeLuca, H. F. (1983). Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcified Tissue International 35, 177182.CrossRefGoogle ScholarPubMed
Pfeilschrifter, J., D'Souza, S. M. & Mundy, G. R. (1987). Effects of transforming growth factor β on osteoblastic Osteosarcoma cells. Endocrinology 121, 212218.CrossRefGoogle Scholar
Pledger, W. J., Stiles, C. D., Antoniades, H. N. & Scher, C. D. (1977). Induction of DNA synthesis in 3T3 cell by serum components. Proceedings of the National Academy of Sciences, USA 74, 44814485.CrossRefGoogle ScholarPubMed
Provvedini, D. M., Tsoukos, C. D., Deftos, L. J. & Manolagas, S. C. (1983). 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science 221, 11811183.CrossRefGoogle ScholarPubMed
Raisz, L. G., Trummel, C. L., Holick, M. F. & DeLuca, H. F. (1972). 1,25-Dihydroxycholecalciferol-apotent stimulator of bone resorption in tissue culture. Science 175, 768769.CrossRefGoogle ScholarPubMed
Reitsdma, P. H., Rothberg, P. G., Astrin, S. M., Trial, J., Bar-Shavit, Z., HAll, A., Teitelbaum, S. & Kahn, A. J. (1983). Regulation of myc gene expression in HL-60 leukemia cells by a vitamin D metabolite. Nature 306, 492494.CrossRefGoogle Scholar
Reynolds, J., Holick, M. F. & DeLuca, H. F. (1973). The role of vitamin D metabolites in bone resorption Calcified Tissue Research 12, 295301.Google Scholar
Roberts, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M. & Sporn, M. B., (1981). New class of transforming growth factor molecules potentiated by epidermal growth factors. Proceedings of the Academy of Sciences, USA 78, 53395344.CrossRefGoogle Scholar
Rodan, S. B., Wesolowski, G., Thomas, K. & Rodan, G. A. (1987). Growth Stimulation of rat calvaria osteoblastic cells by acidic fibroblast growth factor. Endocrinology 121, 19171923.CrossRefGoogle ScholarPubMed
Schalch, D. S., Sessions, C. M., Farley, A. C., Masakawa, A., Emlerr, C. A. & Dills, D. G. (1986). Interaction of IGFI with cultured rat chondrocytes. Endocrinology 118, 15901597.CrossRefGoogle Scholar
Urist, M. R., DeLange, R. J. & Finerman, G. A. M. (1983). Bone cell differentiation and growth factors. Science 220, 680685.CrossRefGoogle ScholarPubMed
Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., Hewick, R. M. & Wang, E. A. (1989). Novel regulators of bone formation: molecular clones and activities. Science 242, 15281534.CrossRefGoogle Scholar