Published online by Cambridge University Press: 23 August 2022
In this paper, we consider the following nonlinear Schrödinger equations with the critical Sobolev exponent and mixed nonlinearities:
(1) the above equation has two positive radial solutions for $N=3$, $2< q<4$ and $t>0$ sufficiently large, which gives a rigorous proof of the numerical conjecture in [J. Dávila, M. del Pino and I. Guerra. Non-uniqueness of positive ground states of non-linear Schrödinger equations. Proc. Lond. Math. Soc. 106 (2013), 318–344.];
(2) there exists $t_q^{*}>0$ for $2< q\leq 4$ such that the above equation has ground-states for $t\geq t_q^{*}$ in the case of $2< q<4$ and for $t>t_4^{*}$ in the case of $q=4$, while the above equation has no ground-states for $0< t< t_q^{*}$ for all $2< q\leq 4$, which, together with the well-known results on ground-states of the above equation, almost completely solve the existence of ground-states, except for $N=3$, $q=4$ and $t=t_4^{*}$.