In this paper, we consider the following nonlinear Schrödinger equations with the critical Sobolev exponent and mixed nonlinearities:\[\left\{\begin{aligned} & -\Delta u+\lambda u=t|u|^{q-2}u+|u|^{2^{*}-2}u\quad\text{in }\mathbb{R}^{N},\\ & u\in H^{1}(\mathbb{R}^{N}), \end{aligned}\right.\]![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_eqnU1.png)
where $N\geq 3$
, $t>0$
, $\lambda >0$
and $2< q<2^{*}=\frac {2N}{N-2}$
. Based on our recent study on the normalized solutions of the above equation in [J. Wei and Y. Wu, Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, e-print arXiv:2102.04030[Math.AP].], we prove that
(1) the above equation has two positive radial solutions for $N=3$
, $2< q<4$
and $t>0$
sufficiently large, which gives a rigorous proof of the numerical conjecture in [J. Dávila, M. del Pino and I. Guerra. Non-uniqueness of positive ground states of non-linear Schrödinger equations. Proc. Lond. Math. Soc. 106 (2013), 318–344.];
(2) there exists $t_q^{*}>0$
for $2< q\leq 4$
such that the above equation has ground-states for $t\geq t_q^{*}$
in the case of $2< q<4$
and for $t>t_4^{*}$
in the case of $q=4$
, while the above equation has no ground-states for $0< t< t_q^{*}$
for all $2< q\leq 4$
, which, together with the well-known results on ground-states of the above equation, almost completely solve the existence of ground-states, except for $N=3$
, $q=4$
and $t=t_4^{*}$
.
Moreover, based on the almost completed study on ground-states to the above equation, we introduce a new argument to study the normalized solutions of the above equation to prove that there exists
$0<\overline {t}_{a,q}<+\infty$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline20.png)
for
$2< q<2+\frac {4}{N}$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline21.png)
such that the above equation has no positive normalized solutions for
$t>\overline {t}_{a,q}$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline22.png)
with
$\int _{\mathbb {R}^{N}}|u|^{2}{\rm d}x=a^{2}$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline23.png)
, which, together with our recent study in [J. Wei and Y. Wu, Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, e-print arXiv:2102.04030[Math.AP].], gives a completed answer to the open question proposed by Soave in [N. Soave. Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal. 279 (2020) 108610.]. Finally, as applications of our new argument, we also study the following Schrödinger equation with a partial confinement:
\[\left\{ \begin{aligned} & -\Delta u+\lambda u+(x_1^{2}+x_2^{2})u=|u|^{p-2}u\quad\text{in }\mathbb{R}^{3},\\ & u\in H^{1}(\mathbb{R}^{3}),\quad \int_{\mathbb{R}^{3}}|u|^{2}{\rm d}x=r^{2}, \end{aligned}\right.\]![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_eqnU2.png)
where
$x=(x_1,x_2,x_3)\in \mathbb {R}^{3}$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline24.png)
,
$\frac {10}{3}< p<6$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline25.png)
,
$r>0$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline26.png)
is a constant and
$(u, \lambda )$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline27.png)
is a pair of unknowns with
$\lambda$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline28.png)
being a Lagrange multiplier. We prove that the above equation has a second positive solution, which is also a mountain-pass solution, for
$r>0$![](//static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline29.png)
sufficiently small. This gives a positive answer to the open question proposed by Bellazzini
et al. in [J. Bellazzini, N. Boussaid, L. Jeanjean and N. Visciglia. Existence and Stability of Standing Waves for Supercritical NLS with a Partial Confinement. Commun. Math. Phys. 353 (2017), 229–251].