Published online by Cambridge University Press: 14 November 2011
The correspondence between radicals of associative rings and A-radicals is studied. It is shown that corresponding to each A-radical there is an interval of radicals and that each radical belongs to exactly one such interval. The question of the nature of the radical of a one-sided ideal is considered. It is shown that the radicals such that the radical of a one-sided ideal is always a one-sided ideal are those which contain their associated A-radicals. Radicals such that the radical of a one-sided ideal always equals the intersection of a left ideal and a right ideal are described, as are those A-radicals such that every associated radical has this property.