Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T22:43:18.667Z Has data issue: false hasContentIssue false

Bigraded structures and the depth of blow-up algebras

Published online by Cambridge University Press:  12 July 2007

Gemma Colomé-Nin
Affiliation:
Departament d'Álgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain (gcolome@ub.edu;
Juan Elias
Affiliation:
Departament d'Álgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spainelias@ub.edu

Abstract

Let R be a Cohen–Macaulay local ring, and let IR be an ideal with minimal reduction J. In this paper we attach to the pair (I, J) a non-standard bigraded module ΣI, J. The study of the bigraded Hilbert function of ΣI, J allows us to prove an improved version of Wang's conjecture and a weak version of Sally's conjecture, both on the depth of the associated graded ring grI(R). The module ΣI, J can be considered as a refinement of the Sally module introduced previously by Vasconcelos.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)