Published online by Cambridge University Press: 14 November 2011
In this paper, we introduce a new class of solutions of reaction-diffusion systems, termed directional wave front solutions. They have a propagating character and the propagation direction selects some distinguished boundary points on which we can impose boundary conditions. The Neumann and Dirichlet problems on these points are treated here in order to prove some theorems on the existence of directional wave front solutions of small amplitude, and to partially establish their asymptotic behaviour.