Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T20:31:39.859Z Has data issue: false hasContentIssue false

The existence of principal eigenvalues for problems with indefinite weight function on ℝk

Published online by Cambridge University Press:  14 November 2011

K. J. Brown
Affiliation:
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K
A. Tertikas
Affiliation:
Department of Mathematics, University of Crete, 71409 Iraklio, Crete, Greece

Synopsis

We investigate the existence of positive principal eigenvalues of the problem - ∆u(x) = λg(x)u(x) for x ∈ ℝk where the weight function g changes sign in ℝk and is negative for |x| sufficiently large.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berestycki, H. and Lions, P. L.. Nonlinear scalar field equations I, existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), 313345.CrossRefGoogle Scholar
2Brown, K. J., Cosner, C. and Fleckinger, J.. Principal eigenvalues for problems with indefinite weight function on R n. Proc. Amer. Math. Soc. 109 (1990), 147155.Google Scholar
3Brown, K. J., Lin, S. S. and Tertikas, A.. Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics. Math. Biol. 27 (1989), 91104.CrossRefGoogle Scholar
4Brown, K. J. and Tertikas, A.. On the bifurcation of radially symmetric steady-state solutions arising in population genetics. SIAM J. Math. Anal. 22 (1991), 400413.CrossRefGoogle Scholar
5Fleming, W. H.. A selection-migration model in population genetics. J. Math. Biol. 2 (1975), 219233.CrossRefGoogle Scholar
6Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order (Berlin: Springer, 1983).Google Scholar
7Kawohl, B.. Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics 1150 (Berlin: Springer, 1985).CrossRefGoogle Scholar