Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T22:41:30.041Z Has data issue: false hasContentIssue false

Fourier multipliers for Hardy spaces on graded Lie groups

Published online by Cambridge University Press:  02 November 2022

Qing Hong
Affiliation:
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China (qhong@mail.bnu.edu.cn)
Guorong Hu
Affiliation:
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China (qhong@mail.bnu.edu.cn)
Michael Ruzhansky
Affiliation:
Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, B 9000 Ghent, Belgium School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom (Michael.Ruzhansky@UGent.be)

Abstract

In this paper, we investigate the $H^{p}(G) \rightarrow L^{p}(G)$, $0< p \leq 1$, boundedness of multiplier operators defined via group Fourier transform on a graded Lie group $G$, where $H^{p}(G)$ is the Hardy space on $G$. Our main result extends those obtained in [Colloq. Math. 165 (2021), 1–30], where the $L^{1}(G)\rightarrow L^{1,\infty }(G)$ and $L^{p}(G) \rightarrow L^{p}(G)$, $1< p <\infty$, boundedness of such Fourier multiplier operators were proved.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulos, G.. Spectral multipliers on Lie groups of polynomial growth. Proc. Amer. Math. Soc. 120 (1994), 973979.CrossRefGoogle Scholar
Bagchi, S.. Fourier Multipliers on the Heisenberg groups revisited. Studia Math. 260 (2021), 241272.Google Scholar
Bonfiglioli, A.. Taylor formula for homogenous groups and applications. Math. Z. 262 (2009), 255279.10.1007/s00209-008-0372-zCrossRefGoogle Scholar
Calderón, A. P. and Torchinsky, A.. Parabolic maximal functions associated with a distribution. II. Adv. Math. 24 (1977), 101171.CrossRefGoogle Scholar
Christ, M.. $L^{p}$ bounds for spectral multipliers on nilpotent groups. Trans. Amer. Math. Soc. 328 (1991), 7381.Google Scholar
Coifman, R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242 (Springer-Verlag, Berlin-New York, 1971).CrossRefGoogle Scholar
Coifman, R. and Weiss, G.. Multiplier transformations of functions on $SU(2)$ and $\Sigma _2$. Rev. Un. Mat. Argentina 25 (1970/71), 145166.Google Scholar
De Michele, L. and Mauceri, G.. $L^{p}$ multipliers on the Heisenberg group. Michigan Math. J. 26 (1979), 361371.10.1307/mmj/1029002267CrossRefGoogle Scholar
Dixmier, J., $C^{\ast }$-algebras, Translated from the French by Jellett, Francis, North-Holland Mathematical Library, Vol. 15 (North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977).Google Scholar
Fischer, V.. Differential structure on the dual of a compact Lie group. J. Funct. Anal. 279 (2020), 108555.CrossRefGoogle Scholar
Fischer, V. and Ruzhansky, M.. Fourier multipliers on graded Lie groups. Colloq. Math. 165 (2021), 130.CrossRefGoogle Scholar
Fischer, V. and Ruzhansky, M., Quantization on nilpotent Lie groups, Progress in Mathematics, Vol. 314 (Birkhäuser Basel, 2016).CrossRefGoogle Scholar
Fischer, V. and Ruzhansky, M.. Sobolev spaces on graded Lie groups. Ann. Inst. Fourier (Grenoble) 67 (2017), 16711723.CrossRefGoogle Scholar
Folland, G. B. and Stein, E. M., Hardy spaces on homogeneous groups. Mathematical Notes Vol. 28 (Princeton University Press, Princeton, 1982).Google Scholar
Hebisch, W. and Zienkiewicz, J.. Multiplier theorem on generalized Heisenberg groups. II. Colloq. Math. 69 (1995), 2936.10.4064/cm-69-1-29-36CrossRefGoogle Scholar
Hulanicki, A.. A functional calculus for Rockland operators on nilpotent Lie groups. Studia Math. 78 (1984), 253266.CrossRefGoogle Scholar
Hulanicki, A., Jenkins, J. W. and Ludwig, J.. Minimum eigenvalues for positive, Rockland operators. Proc. Amer. Math. Soc. 94 (1985), 718720.CrossRefGoogle Scholar
Hulanicki, A. and Stein, E. M., Marcinkiewicz multiplier theorem for stratified groups, unpublished manuscript.Google Scholar
Hörmander, L.. Estimates for translation invariant operators in $L^{p}$ spaces. Acta Math. 104 (1960), 93140.10.1007/BF02547187CrossRefGoogle Scholar
Lin, C.-C.. $L^{p}$ multiplies and their $H^{1} \rightarrow L^{1}$ estimates on the Heisenberg group. Rev. Mat. Iberoam. 11 (1995), 269308.10.4171/RMI/173CrossRefGoogle Scholar
Martini, A. and Müller, D.. Spectral multiplier theorems of Euclidean type on new classes of $2$-step stratified groups. Proc. Lond. Math. Soc. 109 (2014), 12291263.CrossRefGoogle Scholar
Martini, A. and Müller, D.. Spectral multipliers on 2-step groups: topological versus homogeneous dimension. Geom. Funct. Anal. 26 (2016), 680702.CrossRefGoogle Scholar
Mauceri, G. and Meda, S.. Vector-valued multipliers on stratified groups. Rev. Mat. Iberoam. 6 (1990), 141154.CrossRefGoogle Scholar
Müller, D. and Stein, E. M.. On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. 73 (1994), 413440.Google Scholar
Rubin, R.. Multipliers on the rigid motions of the plane and their relations to multipliers on direct products. Proc. Amer. Math. Soc. 59 (1976), 8998.CrossRefGoogle Scholar
Ruzhansky, M. and Wirth, J.. On multipliers on compact Lie groups. Funct. Anal. Appl. 47 (2013), 7275.CrossRefGoogle Scholar
Ruzhansky, M. and Wirth, J.. $L^{p}$ Fourier multipliers on compact Lie groups. Math. Z. 280 (2015), 621642.CrossRefGoogle Scholar
Strichartz, R.. Multiplier transformations on compact Lie groups and algebras. Trans. Amer. Math. Soc. 193 (1974), 99110.CrossRefGoogle Scholar
Vretare, L.. On $L^{p}$ Fourier multipliers on a compact Lie-group. Math. Scand. 35 (1974), 4955.10.7146/math.scand.a-11535CrossRefGoogle Scholar
Weiss, N.. $L^{p}$ estimates for bi-invariant operators on compact Lie groups. Amer. J. Math. 94 (1972), 103118.CrossRefGoogle Scholar