Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T06:48:45.641Z Has data issue: false hasContentIssue false

Multiplicity results for nonlinear elliptic equations involving critical Sobolev exponent*

Published online by Cambridge University Press:  14 November 2011

A. Capozzi
Affiliation:
Dipartimento di Matematica, Università degli Studi di Bari, Via G. Fortunato, 70125 Bari, Italy
G. Palmieri
Affiliation:
Dipartimento di Matematica, Università degli Studi di Bari, Via G. Fortunato, 70125 Bari, Italy

Synopsis

In this paper we study the following boundary value problem

where Ω is a bounded domain in Rn, n≧3, x ∈Rn, p* = 2n/(n – 2) is the critical exponent for the Sobolev embedding is a real parameter and f(x, t) increases, at infinity, more slowly than .

By using variational techniques, we prove the existence of multiple solutions to the equations (0.1), in the case when λ belongs to a suitable left neighbourhood of an arbitrary eigenvalue of −Δ, and the existence of at least one solution for any λ sufficiently large.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aubin, T.. Equations differentielles non linéaires. Bull. Sci. Math. 99 (1975), 201210.Google Scholar
2Aubin, T.. Nonlinear Analysis on Manifolds. Mongé-Ampere equations (Berlin: Springer, 1982).CrossRefGoogle Scholar
3Bartolo, P., Benci, V. and Fortunato, D.. Abstract critical point theorems and applications to some nonlinear problems with “strong resonance” at infinity. Nonlinear Anal. T.M.A. 7(9), (1983), 9811012.CrossRefGoogle Scholar
4Brézis, H. and Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437477.CrossRefGoogle Scholar
5Cerami, G., Fortunato, D. and Struwe, M.. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré, Anal. Nonlinéaire 1 (1984), 341350.CrossRefGoogle Scholar
6Coclite, M. M. and Palmieri, G.. Multiplicity results for variational differential problems and applications (preprint).Google Scholar
7Fortunato, D. and Palmieri, G.. Remarks on the Yamabe problem and the Palais-Smale condition Rend. Sem. Mat. Univ. Padova, 76 (1986).Google Scholar
8Ladyzenskaia, O. A. and Ural'ceva, N. N.. Equations aux dérivées partielles de type elliptique (Paris: Dunod, 1968).Google Scholar
9Trudinger, N.. Remarks concerning the conformal deformation of Riemannian structure of compact manifolds. Ann. Scuola Norm. Sup. Pisa 22 (1968), 265274.Google Scholar
10Capozzi, A., Fortunato, D. and Palmieri, G.. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré, Anal. Nonlinéaire 2 (1985), 463470.CrossRefGoogle Scholar