Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T20:46:24.473Z Has data issue: false hasContentIssue false

On regular semigroup rings

Published online by Cambridge University Press:  14 November 2011

Jan Okniński
Affiliation:
Institute of Mathematics, University of Warsaw, 00-901 Warsaw, Poland

Extract

It is shown that if A is an algebra over a field, then the regularity of the semigroup algebra A[G] implies that the semigroup G is periodic. This enables us to characterize regular semigroup algebras of semigroups with d.c.c. on principal ideals. Also, regular self-injective semigroup algebras are described.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Clifford, A. H. and Preston, G. B.. The algebraic theory of semi-groups. Math. Surveys of the Amer. Math. Soc. 7, 1961.Google Scholar
2Connell, I. G.. On the group ring. Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
3Faith, C.. Lectures on injective modules and quotient rings. Lecture Notes in Mathematics 49 (Berlin: Springer, 1967).Google Scholar
4Gilmer, R. and Teply, M. L.. Idempotents of commutative semigroup rings. Houston J. Math. 3 (1977), 369385.Google Scholar
5Goodearl, K. R.. Von Neumann regular rings. (London: Pitman, 1979).Google Scholar
6Hall, T. E.. On the natural ordering of ℑ-classes and of idempotents in a regular semigroup. Glasgow Math. J. 11 (1970), 167168.CrossRefGoogle Scholar
7Kozuhov, I. B.. Self-injective semigroup rings of inverse semigroups. Izv. Vyss. Ucebn. Zaved. 1981, No. 2, 4651.Google Scholar
8Lawrence, J. and Woods, S. M.. Semilocal group rings of characteristic zero. Proc. Amer. Math. Soc. 60 (1976), 810.CrossRefGoogle Scholar
9Menal, P.. On tensor products of algebras being von Neumann regular or self-injective. Comm. in Algebra 9 (1981), 691697.CrossRefGoogle Scholar
10Munn, W. D.. On the regularity of certain semigroup algebras. Semigroups, pp. 207224 (London: Academic Press, 1980).CrossRefGoogle Scholar
11Okniriski, J.. Artinian semigroup rings. Comm. in Algebra 10 (1982), 109114.CrossRefGoogle Scholar
12Passman, D. S.. The algebraic structure of group rings (New York: Wiley Interscience, 1977).Google Scholar
13Renault, G.. Sur les anneaux de groupes. C. R. Acad. Sci. Paris 273 (1971), 8487.Google Scholar
14Renault, G.. Algebre non-commutative (Paris: Gauthier-Villars, 1975).Google Scholar
15Utumi, Y.. On continuous rings and self-injective rings. Trans. Amer. Math. Soc. 118 (1965), 158173.CrossRefGoogle Scholar
16Villamayor, O. E.. On weak dimension of algebras. Pacific J. Math 9 (1959), 941951.CrossRefGoogle Scholar
17Weissglass, J.. Regularity of semigroup rings. Proc. Amer. Math. Soc. 25 (1970), 499503.CrossRefGoogle Scholar
18Zelmanov, E. I.. Semigroup algebras with identities. Sib. Math. J. 18 (1977), 787798.Google Scholar