Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T11:14:32.708Z Has data issue: false hasContentIssue false

An autoregressive growth model for longitudinal item analysis

Published online by Cambridge University Press:  01 January 2025

Minjeong Jeon*
Affiliation:
Ohio State University
Sophia Rabe-Hesketh
Affiliation:
University of California, Berkeley
*
Correspondence should be made to Minjeong Jeon, Department of Psychology, Ohio State University, 1827 Neil Avenue, Columbus, OH 43210 USA. Email: jeon.117@osu.edu

Abstract

A first-order autoregressive growth model is proposed for longitudinal binary item analysis where responses to the same items are conditionally dependent across time given the latent traits. Specifically, the item response probability for a given item at a given time depends on the latent trait as well as the response to the same item at the previous time, or the lagged response. An initial conditions problem arises because there is no lagged response at the initial time period. We handle this problem by adapting solutions proposed for dynamic models in panel data econometrics. Asymptotic and finite sample power for the autoregressive parameters are investigated. The consequences of ignoring local dependence and the initial conditions problem are also examined for data simulated from a first-order autoregressive growth model. The proposed methods are applied to longitudinal data on Korean students’ self-esteem.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitkin, M., & Alfó, M. (1998). Regression models for longitudinal binary responses. Statistics and Computing, 8, 289307.CrossRefGoogle Scholar
Aitkin, M., & Alfó, M. (2003). Longitudinal analysis of repeated binary data using autoregressive and random effect modelling. Statistical Modelling, 3, 291303.CrossRefGoogle Scholar
Andersen, E. B. (1985). Estimating latent correlations between repeated testings. Psychometrika, 50, 316.CrossRefGoogle Scholar
Arulampalam, W., & Stewart, M. B. (2009). Simplified implementation of the heckman estimator of the dynamic probit model and a comparison with alternative estimators. Oxford Bulletin of Economics and Statistics, 71, 659681.CrossRefGoogle Scholar
Bartolucci, F., & Nigro, V. (2010). A dynamic model for binary panel data with unobserved heterogeneity admitting a n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document}-consistent conditional estimator. Econometrica, 78, 719733.Google Scholar
Bollen, K. A. (1989). Structural equations with latent variables, New York, USA: WileyCrossRefGoogle Scholar
Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models: A synthesis of two traditions. Sociological Methods & Research, 32, 336383.CrossRefGoogle Scholar
Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21, 205229.CrossRefGoogle Scholar
Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153168.CrossRefGoogle Scholar
Braeken, J. (2011). A boundary mixture approach violations of conditional independence. Psychometrika, 76, 5776.CrossRefGoogle Scholar
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72, 393411.CrossRefGoogle Scholar
Breinegaard, A., Rabe-Hesketh, S., & Skrondal, A. (2015). The transition model test for serial dependence in mixed-effects models for binary data. Statistical Methods in Medical Research. doi:10.1177/0962280215588123.CrossRefGoogle Scholar
Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note. The American Statistician, 36, 153157.Google Scholar
Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581612.CrossRefGoogle Scholar
De Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., & Partchev, I. (2011). The estimation of item response models with the lmer function from the lme4 package in R. Journal of Statistical Software, 39, 128.CrossRefGoogle Scholar
Dunson, D. B. (2003). Dynamic latent trait models for multidimensional longitudinal data. Journal of the American Statistical Association, 98, 555563.CrossRefGoogle Scholar
Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495515.CrossRefGoogle Scholar
Engle, R. F., Griliches, Z., & Intriligator, M. (1980). Wald, likelihood ratio and Lagrange multiplier test in econometrics. Handbook of econometrics, Amsterdam: North-Holland Science Publishers 775826.Google Scholar
Fahrmeir, L., & Kaufmann, H. (1987). Regression models for non-stationary categorical time series. Journal of Time Series Analysis, 8, 147160.CrossRefGoogle Scholar
Fotouhi, A. R. (2005). The initial conditions problem in longitudinal binary process: A simulation study. Simulation Modelling Practice and Theory, 13, 566583.CrossRefGoogle Scholar
Gibbons, R. D., & Hedeker, D. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423436.CrossRefGoogle Scholar
Hancock, G. R., & Kuo, W. (2001). An illustration of second-order latent growth models. Structural Equation Modeling, 8, 470489.CrossRefGoogle Scholar
Heagerty, P., & Kurland, B. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973985.CrossRefGoogle Scholar
Heckman, J. J., Manski, C. F., & MacFadden, D. (1981). The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. Structural analysis of discrete data with econometric applications, Cambridge: MIT Press 179195.Google Scholar
Hoskens, M., & De Boeck, P. (1997). A parametric model for local item dependence among test items. Psychological Methods, 2, 261277.CrossRefGoogle Scholar
Hsiao, C. (2003). Analysis of panel data, 2New York, USA: Cambridge University PressCrossRefGoogle Scholar
Jeon, M. (2012). Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth. PhD thesis, University of California, Berkeley.Google Scholar
Jeon, M., & Rabe-Hesketh, S. (2012). Profile-likelihood approach for estimating generalized linear mixed models with factor structures. Journal of Educational and Behavioral Statistics, 37, 518542.CrossRefGoogle Scholar
Jeon, M., Rijmen, F., & Rabe-Hesketh, S. (2013). Modeling differential item functioning using a generalization of the multiple-group bifactor model. Journal of Educational and Behavioral Statistics, 38, 3260.CrossRefGoogle Scholar
Lee, K.-S., Lim, H.-J., & Ahn, S.-Y. (2010). Korea Youth Panel Study. National Youth Policy Institute, Seoul. Retrieved http://archive.nypi.re.kr.Google Scholar
Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49, 305328.CrossRefGoogle Scholar
McArdle, J. J., Cattell, R. B., & Nesselroade, J. (1988). Dynamic but structural equation modeling of repeated measures data. Handbook of multivariate experimental psychology, New York, USA: Plenum Press 561614.CrossRefGoogle Scholar
Mellenbergh, G. J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127143.CrossRefGoogle Scholar
Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of measurement bias. Psychometrika, 57, 289311.CrossRefGoogle Scholar
Millsap, R. E. (2010). Testing measurement invariance using item response theory in longitudinal data: An introduction. Child Development Perspectives, 4, 59.CrossRefGoogle Scholar
Pastor, D. A., & Beretvas, S. N. (2006). Longitudinal Rasch modeling in the context of psychotherapy. Applied Psychological Measurement, 30, 100120.CrossRefGoogle Scholar
Potscher, B. M., & Srinivasan, S. (1994). A comparison of order estimation procedures for ARMA models. Statistica Sinica, 4, 2950.Google Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301323.CrossRefGoogle Scholar
Rijmen, F. (2009). An efficient EM algorithm for multidimensional IRT models: Full information maximum likelihood estimation in limited time. ETS Research Report (RR0903).Google Scholar
Rogers, H. J., & Swaminathan, H. (1993). A comparison of logistic regression and Mantel-Haenszel procedures for detecting differential item functioning. Applied Psychological Measurement, 17, 105116.CrossRefGoogle Scholar
Rotnitzky, A., & Wypij, D. (1994). A note on the bias of estimators with missing data. Biometrics, 50, 11631170.CrossRefGoogle ScholarPubMed
Rubin, D. B. (1976). Inference and missing data (with discussion). Biometrka, 63, 581592.CrossRefGoogle Scholar
Satorra, A., & Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 51, 8390.CrossRefGoogle Scholar
Sayer, A. G., Cumsille, P. E., Collins, L. M., & Sayer, A. G. (2001). Second-order latent growth model. New methods for the analysis of change, Washington, DC: American Psychological Association 179199.CrossRefGoogle Scholar
Segawa, E. (2005). A growth model for multilevel ordinal data. Journal of Educational and Behavioral Statistics, 30, 369396.CrossRefGoogle Scholar
Serrano, D. (2010). A second-order growth model for longitudinal item response data. PhD thesis, University of North Carolina, Chapel Hill.Google Scholar
Skrondal, A., & Rabe-Hesketh, S. (2014). Handling initial conditions and endogenous covariates in dynamic/transiton models for binary data with unobserved heterogeneity. Journal of the Royal Statistical Society Series C, 63, 211237.CrossRefGoogle Scholar
Tuerlinckx, F., & De Boeck, P. (2001). The effect of ignoring item interactions on the estimated discrimination parameters in item response theory. Psychological Methods, 6, 181195.CrossRefGoogle ScholarPubMed
Vasdekis, V. G. S., Cagnone, S., & Moustaki, I. (2012). A composite likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika, 77, 425441.CrossRefGoogle ScholarPubMed
Verguts, T., & De Boeck, P. (2000). A Rasch model for learning while solving an intelligence test. Applied Psychological Measurement, 24, 151162.CrossRefGoogle Scholar
Verhelst, N. D., & Glas, C. A. W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395415.CrossRefGoogle Scholar
Wang, W., & Wilson, M. (2005). The Rasch testlet model. Applied Psychological Measurement, 29, 126149.CrossRefGoogle Scholar
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 126.CrossRefGoogle Scholar
Wilson, M., & Adams, R. J. (1995). Rasch models for item bundles. Psychometrika, 60, 181198.CrossRefGoogle Scholar
Wooldridge, J. F. (2005). Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. Journal of Applied Econometrics, 20, 3954.CrossRefGoogle Scholar
Zumbo, B. D. (1999). A handbook on the theory and methods for differential item functioning: Logistic regression modeling as a unitary framework for binary and likert-type (ordinal) item scores. Directorate of Human Resources Research and Evaluation, Department of National Defense, Ottawa.Google Scholar