In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for specifying the attributes required for each item is the Q-matrix. Although construction of Q-matrix is typically performed by domain experts, it nonetheless, to a large extent, remains a subjective process, and misspecifications in the Q-matrix, if left unchecked, can have important practical implications. To address this concern, this paper proposes a discrimination index that can be used with a wide class of CDM subsumed by the generalized deterministic input, noisy “and” gate model to empirically validate the Q-matrix specifications by identifying and replacing misspecified entries in the Q-matrix. The rationale for using the index as the basis for a proposed validation method is provided in the form of mathematical proofs to several relevant lemmas and a theorem. The feasibility of the proposed method was examined using simulated data generated under various conditions. The proposed method is illustrated using fraction subtraction data.