Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T23:28:48.874Z Has data issue: true hasContentIssue false

An Exact and Optimal Standardized Person Test for Assessing Consistency with the Rasch Model

Published online by Cambridge University Press:  01 January 2025

Karl Christoph Klauer*
Affiliation:
Freie Universität Berlin
*
Requests for reprints should be sent to Karl Christoph Klauer, FU Berlin, Institut für Psychologie, Habelschwerdter Allee 45, 1000 Berlin 33, FR GERMANY.

Abstract

The Rasch model predicts that an individual's ability level is invariant over subtests of the total test, and thus, all subtests measure the same latent trait. A person test of this invariance hypothesis is discussed that is uniformly most powerful and standardized in the sense that the conditional distribution of the test statistic, given a particular level of ability, does not depend on the absolute value of the examinee's ability parameter. The test can be routinely performed by applying a computer program designed by and obtainable from the author. Finally, a suboptimal test is derived that is extremely easy to use, and an overall group test of the invariance hypothesis discussed. All tests considered do not rely on asymptotic approximations; hence, they may be applied when the test is of only moderate length and the group of examinees is small.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Barndorff-Nielsen, O. (1978). Information and exponential families, New York: Wiley.Google Scholar
Borland International (1987). Turbo Pascal 4.0 reference manual, Scotts Valley, CA: Author.Google Scholar
Cressie, N., & Holland, P. W. (1983). Characterizing the manifest probabilities of a latent trait model. Psychometrika, 48, 129141.CrossRefGoogle Scholar
Cronbach, L. J., & Gleser, G. C. (1965). Psychological tests and personnel decisions, Urbana, IL: University of Illinois Press.Google Scholar
Drasgow, F., Levine, M., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 6780.CrossRefGoogle Scholar
Drasgow, F., Levine, M. V., & McLaughlin, M. E. (1987). Detecting inappropriate test scores with optimal and practical appropriateness indices. Applied Psychological Measurement, 11, 5979.CrossRefGoogle Scholar
Gustafsson, J. E. (1980). Testing and obtaining the fit of data to the Rasch model. British Journal of Mathematical and Statistical Psychology, 33, 205233.CrossRefGoogle Scholar
Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications, Boston, MA: Kluwer-Nijhoff.CrossRefGoogle Scholar
Harnisch, D. L., & Linn, R. L. (1981). Analysis of item response patterns: Questionable data and dissimilar curriculum practices. Journal of Educational Measurement, 18, 133146.CrossRefGoogle Scholar
Hornke, L. F., Rettig, K., & Ages, C. (1988). Konstruktion eines Tests mit verbalen Analogien (CAT/A2) [Construction of a test with verbal analogies (CAT/A2)], Aachen: RWTH Aachen, Institut für Psychologie.Google Scholar
Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 48, 223245.CrossRefGoogle Scholar
Klauer, K. C. (1986). Non-exponential families of distributions. Metrika, 33, 229305.CrossRefGoogle Scholar
Lehmann, E. (1970). Testing statistical hypotheses, New York: Wiley.Google Scholar
Levine, M. V., & Drasgow, F. (1983). Appropriateness measurement: Validity studies and variable ability models. In Weiss, D. J. (Eds.), New horizons in testing (pp. 109131). New York: Academic Press.Google Scholar
Levine, M. V., & Drasgow, F. (1988). Optimal appropriateness measurement. Psychometrika, 53, 161176.CrossRefGoogle Scholar
Lienert, G. A. (1973). Verteilungsfreie Methoden in der Biostatistik, Band I [Distribution-free methods in biometrics, Vol. 1], Meisenhein am Glan: Anton Hein.Google Scholar
Molenaar, I., & Hoijtink, H. (1990). The many null distributions of person fit indices. Psychometrika, 55, 75106.CrossRefGoogle Scholar
Rost, J. (1982). An unconditional likelihood ratio for testing item homogeneity in the Rasch model. Education Research and Perspectives, 9, 717.Google Scholar
Rudner, L. M. (1983). Individual assessment accuracy. Journal of Educational Measurement, 20, 207219.CrossRefGoogle Scholar
Stoer, J. (1979). Einführung in die numerische Mathematik, Band I [Introduction to numerical mathematics, Vol. I], Berlin: Springer.Google Scholar
Tatsuoka, K. K. (1984). Caution indices based on item response theory. Psychometrika, 49, 95110.CrossRefGoogle Scholar
Trabin, T. E., & Weiss, D. J. (1983). The person response curve: Fit of individuals to item response theory models. In Weiss, D. J. (Eds.), New horizons in testing (pp. 83108). New York: Academic Press.Google Scholar
Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psychological Measurement, 6, 473492.CrossRefGoogle Scholar
Witting, H. (1978). Mathematische Statistik [Mathematical statistics], Stuttgart: Teubner.Google Scholar
Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14, 97115.CrossRefGoogle Scholar