Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T19:22:57.775Z Has data issue: false hasContentIssue false

An Extension of the Rating Scale Model with an Application to the Measurement of Change

Published online by Cambridge University Press:  01 January 2025

G. H. Fischer*
Affiliation:
University of Vienna
P. Parzer
Affiliation:
University of Vienna
*
Requests for reprints should be sent to G. H. Fischer, Department of Psychology, University of Vienna, Liebiggasse 5, A-1010 Wien (Vienna), AUSTRIA.

Abstract

The polytomous unidimensional Rasch model with equidistant scoring, also known as the rating scale model, is extended in such a way that the item parameters are linearly decomposed into certain basic parameters. The extended model is denoted as the linear rating scale model (LRSM). A conditional maximum likelihood estimation procedure and a likelihood-ratio test of hypotheses within the framework of the LRSM are presented. Since the LRSM is a generalization of both the dichotomous Rasch model and the rating scale model, the present algorithm is suited for conditional maximum likelihood estimation in these submodels as well. The practicality of the conditional method is demonstrated by means of a dichotomous Rasch example with 100 items, of a rating scale example with 30 items and 5 categories, and in the light of an empirical application to the measurement of treatment effects in a clinical study.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Work supported in part by the Fonds zur Förderung der Wissenschaftlichen Forschung under Grant No. P6414.

References

Andersen, E. B. (1966). Den diskrete målingsmodel af endelig orden med anvendelse på et socialpsykologisk materiale [The discrete measurement model of finite dimension with applications to data from social psychology], Copenhagen: Statens Trykningskontor.Google Scholar
Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B, 32, 283301.CrossRefGoogle Scholar
Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. Journal of the Royal Statistical Society, Series B, 34, 4254.CrossRefGoogle Scholar
Andersen, E. B. (1973). Conditional inference and models for measuring, Copenhagen: Mentalhygiejnisk Forlag.Google Scholar
Andersen, E. B. (1973). Conditional inference and multiple choice questionnaires. British Journal of Mathematical and Statistical Psychology, 26, 3144.CrossRefGoogle Scholar
Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 6981.CrossRefGoogle Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Andersen, E. B. (1983). A general latent structure model for contingency table data. In Wainer, H., Messik, S. (Eds.), Principals of modern psychological measurement (pp. 117138). Hillsdale, NJ: Erlbaum.Google Scholar
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Andrich, D. (1978). Application of a psychometric rating model to ordered categories which are scored with successive integers. Applied Psychological Measurement, 2, 581594.CrossRefGoogle Scholar
Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359374.CrossRefGoogle Scholar
Fischer, G. H. (1974). Einführung in die Theorie psychologischer Tests [Introduction to the theory of mental tests], Berne: Huber.Google Scholar
Fischer, G. H. (1977). Some probabilistic models for the description of attitudinal and behavioral changes under the influence of mass communication. In Kempf, W. F., Repp, R. (Eds.), Mathematical models for social psychology (pp. 102151). Berne: Huber.Google Scholar
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fischer, G. H. (1989). An IRT-based model for dichotomous longitudinal data. Psychometrika, 54, 599624.CrossRefGoogle Scholar
Glas, C. A. W. (1989). Contributions to estimating and testing Rasch models, The Hague: CIP-Gegevens Koninglijke Bibliotheek.Google Scholar
Haberman, S. J. (1974). Log-linear models for frequency tables with ordered classifications. Biometrics, 5, 589600.CrossRefGoogle Scholar
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
McCullagh, P. (1980). Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society, Series B, 42, 109142.CrossRefGoogle Scholar
McCullagh, P., Nelder, J. A. (1983). Generalized linear models, London: Chapman and Hall.CrossRefGoogle Scholar
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV. Berkeley symposium on mathematical statistics and probability, Volume 4 (pp. 321333). Berkeley: University of California Press.Google Scholar
Rasch, G. (1965). Statistisk seminar [Statistical seminar], Copenhague: University of Copenhague, Department of Mathematical Statistics.Google Scholar
Rasch, G. (1967). An informal report on a theory of objectivity in comparisons. In van der Kamp, L. J. Th., Vlek, C. A. J. (Eds.), Psychological measurement theory (pp. 119). Leyden: University of Leyden.Google Scholar
Tutz, G. (1989). Latent Trait-Modelle für ordinale Beobachtungen [Latent trait models for ordinal data], Berlin: Springer.CrossRefGoogle Scholar
Verhelst, N. D., Glas, C. A. W., van der Sluis, A. (1984). Estimation problems in the Rasch model: The basic symmetric functions. Computational Statistics Quarterly, 1, 245262.Google Scholar
Widowitz, E. (1987). Der Effekt autogenen Trainings bei funktionellen Erkrankungen [The effects of a relexation training on the functional syndrome]. Unpublished master's Thesis, University of Vienna, Department of Psychology.Google Scholar
Wright, B. D., Masters, G. N. (1982). Rating scale analysis, Chicago: Mesa Press.Google Scholar
Zerssen, D. v. (1976). Klinische Selbstbeurteilungs-Skalen (KSb-S) aus dem Münchner Psychiatrischen Informations-System (PSYCHIS München) [The clinical self-rating scales (KSb-S) of the “Munich Psychiatric Information System” (PSYCHIS)], Weinheim: Beltz.Google Scholar