Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T19:26:37.609Z Has data issue: false hasContentIssue false

Constrained Latent Class Analysis: Simultaneous Classification and Scaling of Discrete Choice Data

Published online by Cambridge University Press:  01 January 2025

Ulf Böckenholt*
Affiliation:
University of Illinois, Champaign-Urbana
Ingo Böckenholt
Affiliation:
University of Karlsruhe
*
Requests for reprints should be sent to Ulf Böckenholt, Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL 61820.

Abstract

A reparameterization of a latent class model is presented to simultaneously classify and scale nominal and ordered categorical choice data. Latent class-specific probabilities are constrained to be equal to the preference probabilities from a probabilistic ideal-point or vector model that yields a graphical, multidimensional representation of the classification results. In addition, background variables can be incorporated as an aid to interpreting the latent class-specific response probabilities. The analyses of synthetic and real data sets illustrate the proposed method.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors thank Yosiho Takane, the editor and referees for their valuable suggestions. Authors are listed in reverse alphabetical order.

References

Aitkin, M., Anderson, D., Hinde, J. (1981). Statistical modeling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144, 419461.CrossRefGoogle Scholar
Anderson, J. A. (1984). regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B, 46, 130.CrossRefGoogle Scholar
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, Ac-19, 716723.CrossRefGoogle Scholar
Bartholomew, D. J. (1987). Latent variable models and factor analysis, New York: Oxford University Press.Google Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Böckenholt, I., Gaul, W. (1986). Analysis of choice behavior via probabilistic ideal point and vector models. Applied Stochastic Models and Data Analysis, 2, 202226.CrossRefGoogle Scholar
Böckenholt, U. (1990). Multivariate Thurstonian models. Psychometrika, 55, 391404.CrossRefGoogle Scholar
Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice data. In Lanterman, E. D., Feger, H. (Eds.), Similarity and choice (pp. 234289). Bern: Huber.Google Scholar
Clogg, C. C., Goodman, L. A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association, 77, 803815.CrossRefGoogle Scholar
Coombs, C. H. (1964). A theory of data, New York: Wiley.Google Scholar
Dayton, C. M., Macready, G. B. (1988). A latent class covariate model with applications to criterion-referenced testing. In Langeheine, R., Rost, J. (Eds.), Latent trait and latent class models (pp. 129146). New York: Plenum.CrossRefGoogle Scholar
DeSarbo, W. S., Cho, J. (1989). A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data. Psychometrika, 54, 105130.CrossRefGoogle Scholar
DeSarbo, W. S., Hoffman, D. L. (1986). A new unfolding threshold model for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247264.CrossRefGoogle Scholar
DeSarbo, W. S., Howard, D. J., Jedidi, K. (1991). MULTICLUS: A new methodology for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56, 121136.CrossRefGoogle Scholar
DeSarbo, W. S., Jedidi, K., Cool, K., Schendel, D. (1989). Strategic groups, conduct and goal asymmetry: The STATGROUP methodology. Unpublished manuscript, University of Michigan.Google Scholar
DeSoete, G., Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model. Psychometrika, 48, 553566.CrossRefGoogle Scholar
DeSoete, G., Carroll, J. D., DeSarbo, W. S. (1986). The wandering ideal-point model: A probabilistic multidimensional unfolding model for paired comparison data. Journal of Mathematical Psychology, 30, 2841.CrossRefGoogle Scholar
Formann, A. K. (1984). Die Latent-Class-Analyse: Einführung in Theorie und Anwendung [Latent class analysis: An introduction to theory and applications], Weinheim: Beltz Verlag.Google Scholar
Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87111.CrossRefGoogle Scholar
Goodman, L. A. (1978). Analyzing qualitative/categorical data: Log-linear models and latent-structure analysis, Cambridge: Abt Books.Google Scholar
Goodman, L. A. (1979). On the estimation of parameters in latent structure analysis. Psychometrika, 44, 123128.CrossRefGoogle Scholar
Holbrook, M. B., Moore, W. L., Winer, R. S. (1982). Constructing joint spaces from pick-any data: A new tool for consumer analysis. Journal of Consumer Research, 9, 99105.CrossRefGoogle Scholar
Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psychometrika, 55, 641656.CrossRefGoogle Scholar
Langeheine, R., Rost, J. (1988). Latent trait and latent class models, New York: Plenum.CrossRefGoogle Scholar
Lazarsfeld, P. F. et al. (1950). Logical and mathematical foundations of latent structure analysis. In Stouffer, S. A. et al. (Eds.), Studies in social psychology in World War II, Vol. IV (pp. 362412). Princeton: Princeton University Press.Google Scholar
McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, 42, 109142.CrossRefGoogle Scholar
Mislevy, R. J., Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195216.CrossRefGoogle Scholar
Rindskopf, D. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 8597.CrossRefGoogle Scholar
Rost, J. (1985). A latent class model for rating data. Psychometrika, 50, 3749.CrossRefGoogle Scholar
Rost, J. (1988). Rating scale analysis with latent class models. Psychometrika, 53, 327348.CrossRefGoogle Scholar
Rost, J. (1988). Quantitative and qualitative probabilistische Testtheorie [Quantitative and qualitative probabilistic test theory], Bern: Huber.Google Scholar
Schönemann, P. H., Tucker, L. R. (1967). A maximum likelihood solution for the method of successive intervals allowing for unequal stimulus dispersions. Psychometrika, 32, 403417.CrossRefGoogle Scholar
Takane, Y. (1981). Multidimensional successive categories scaling: A maximum likelihood method. Psychometrika, 46, 928.CrossRefGoogle Scholar
Takane, Y. (1983). Choice model analysis of the “pick any/n” type of binary data. Handout at the European Psychometric and Classification Meetings, Jouy-en-Josas, France.Google Scholar
Takane, Y., deLeeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408.CrossRefGoogle Scholar
Tucker, L. R. (1960). Intra-individual and inter-individual multidimensionality. In Gulliksen, H., Messick, S. (Eds.), Psychological scaling: Theory and applications (pp. 155167). New York: Wiley.Google Scholar