Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T22:00:03.806Z Has data issue: false hasContentIssue false

Exact and Best Confidence Intervals for the Ability Parameter of the Rasch Model

Published online by Cambridge University Press:  01 January 2025

Karl Christoph Klauer*
Affiliation:
Freie Universität Berlin
*
Requests for reprints should be sent to Karl Christoph Klauer, FU Berlin, Institut für Psychologie, Habelschwerdter Allee 45, 1000 Berlin 33, FR GERMANY.

Abstract

A commonly used method to evaluate the accuracy of a measurement is to provide a confidence interval that contains the parameter of interest with a given high probability. Smallest exact confidence intervals for the ability parameter of the Rasch model are derived and compared to the traditional, asymptotically valid intervals based on the Fisher information. Tables of the exact confidence intervals, termed Clopper-Pearson intervals, can be routinely drawn up by applying a computer program designed by and obtainable from the author. These tables are particularly useful for tests of only moderate lengths where the asymptotic method does not provide valid confidence intervals.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Barndorff-Nielsen, O. (1978). Information and exponential families, New York: Wiley.Google Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 396479). Reading, MA: Addison-Wesley.Google Scholar
Borland International (1987). Turbo Pascal 4.0 reference manual, Scotts Valley, CA: Author.Google Scholar
Hambleton, P. K., Swaminathan, H. (1985). Item response theory. Principles and applications, Boston: Kluwer-Nijhoff.CrossRefGoogle Scholar
Klauer, K. C. (1986). Non-exponential families of distributions. Metrika, 33, 229305.CrossRefGoogle Scholar
Lehmann, E. (1970). Testing statistical hypotheses, New York: Wiley.Google Scholar
Levine, M. V., Drasgow, F. (1983). Appropriateness measurement: Validity studies and variable ability models. In Weiss, D. J. (Eds.), New horizons in testing (pp. 109131). New York: Academic Press.Google Scholar
Levine, M. V., Drasgow, F. (1988). Optimal appropriateness measurement. Psychometrika, 53, 161176.CrossRefGoogle Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Lord, F. M. (1983). Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability. Psychometrika, 48, 233246.CrossRefGoogle Scholar
Lumsden, J. (1976). Test theory. Annual Review of Psychology, 27, 251280.CrossRefGoogle Scholar
Molenaar, I., Hoijtink, H. (1990). The many null distributions of person fit indices. Psychometrika, 55, 75106.CrossRefGoogle Scholar
Mood, A. M., Graybill, F. A., Boes, D. C. (1974). Introduction to the theory of statistics, Tokyo: McGraw Hill.Google Scholar
Owen, D. B. (1962). Handbook of statistical tables, Reading, MA: Addison-Wesley.Google Scholar
Stelzl, I. (1972). The usefulness of the Rasch model. Psychologische Beiträge, 14, 298324.Google Scholar
Stoer, J. (1979). Einführung in die numerische Mathematik, Band I [Introduction to numerical mathematics, Vol. I], Berlin: Springer.Google Scholar
Trabin, T. E., Weiss, D. J. (1983). The person response curve: Fit of individuals to item response theory models. In Weiss, D. J. (Eds.), New horizons in testing (pp. 83108). New York: Academic Press.Google Scholar
Witting, H. (1978). Mathematische Statistik [Mathematical statistics], Stuttgart: Teubner.Google Scholar
Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14, 97115.CrossRefGoogle Scholar