Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T19:09:08.975Z Has data issue: false hasContentIssue false

A Generalized Rasch Model for Manifest Predictors

Published online by Cambridge University Press:  01 January 2025

Aeilko H. Zwinderman*
Affiliation:
Department of Medical Statistics, University of Leiden
*
Requests for reprints should be sent to Aeilko H. Zwinderman, Department of Medical Statistics, University of Leiden, P.O. Box 9512, 2300 RA Leiden, THE NETHERLANDS.

Abstract

A logistic regression model is suggested for estimating the relation between a set of manifest predictors and a latent trait assumed to be measured by a set of k dichotomous items. Usually the estimated subject parameters of latent trait models are biased, especially for short tests. Therefore, the relation between a latent trait and a set of predictors should not be estimated with a regression model in which the estimated subject parameters are used as a dependent variable. Direct estimation of the relation between the latent trait and one or more independent variables is suggested instead. Estimation methods and test statistics for the Rasch model are discussed and the model is illustrated with simulated and empirical data.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., Stegun, I. A. (1964). Handbook of mathematical functions, New York: Dover Publications.Google Scholar
Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimates. Journal of the Royal Statistical Society, Series B, 32, 283301.CrossRefGoogle Scholar
Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140.CrossRefGoogle Scholar
Andersen, E. B., Madsen, M. (1977). Estimating the parameters of the latent population distribution. Psychometrika, 35, 357374.CrossRefGoogle Scholar
Anderson, J. A. (1972). Separate sample logistic discrimination. Biometrika, 59, 1935.CrossRefGoogle Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Breslow, N. E., Day, N. E. (1980). Statistical methods in cancer research, Vol. 1. The analysis of case-control studies, Lyon: IARC Scientific Publications.Google Scholar
Dixon, W. J. (1985). BMDP statistical software, Berkeley: University of California Press.Google Scholar
Fischer, G. H. (1974). Einführung in die Theorie Psychologischer Tests [Introduction into the theory of psychological tests], Bern: Verlag Hans Huber.Google Scholar
Glas, C. A. W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika, 53, 525546.CrossRefGoogle Scholar
Glas, C. A. W. (1989). Contributions to estimating and testing Rasch models, Arnhem: Cito.Google Scholar
Goldstein, H. (1980). Dimensionality, bias, independence and measurement scale problems in latent trait test score models. British Journal of Mathematical and Statistical Psychology, 33, 234260.CrossRefGoogle Scholar
Lord, F. M. (1980). Applications of item response theory to practical test problems, Hillsdale, NJ: Erlbaum.Google Scholar
Lord, F. M. (1984). Maximum likelihood and bayesian parameter estimation in IRT (RR-84-30-ONR), Princeton, NJ: Educational Testing Service.Google Scholar
Lord, F. M., Novick, M. R. (1968). Statistical theories of mental test scores, Reading: Addison-Wesley.Google Scholar
Molenaar, I. W. (1983). Some improved diagnostics for the Rasch model. Psychometrika, 49, 4972.CrossRefGoogle Scholar
Prentice, R. L., Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika, 66, 403411.CrossRefGoogle Scholar
Rao, C. R. (1973). Linear statistical inference and its applications 2nd ed.,, New York: Wiley.CrossRefGoogle Scholar
Rigdon, S. E., Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 567574.CrossRefGoogle Scholar
van Houwelingen, J. C., le Cessie, S. (1988). Logistic regression: A review. Statistica Neerlandica, 42, 215232.CrossRefGoogle Scholar
Zwinderman, A. H. (in press). A two stage Rasch model approach to dependent item responses: An application of constrained item response models. Methodika.Google Scholar
Zwinderman, A. H., Verhey, Th. J. M., Hermans, J., Kaptein, A. A., & Mulder, J. D. (in press). Application of the Rasch model for the prescription behavior of general practitioners. Journal of Clinical Epidemiology.Google Scholar