Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T21:55:54.189Z Has data issue: false hasContentIssue false

Hierarchical Relations Among Three-Way Methods

Published online by Cambridge University Press:  01 January 2025

Henk A. L. Kiers*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Henk A. L. Kiers, Department of Psychology, Grote Kruisstraat 2/1, 9712 TS Groningen, THE NETHERLANDS.

Abstract

A number of methods for the analysis of three-way data are described and shown to be variants of principal components analysis (PCA) of the two-way supermatrix in which each two-way slice is “strung out” into a column vector. The methods are shown to form a hierarchy such that each method is a constrained variant of its predecessor. A strategy is suggested to determine which of the methods yields the most useful description of a given three-way data set.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The Netherlands organization for scientific research (NWO) is gratefully acknowledged for funding this project. This research was conducted while the author was supported by a PSYCHON-grant (560-267-011) from this organization. The author is obliged to Jos ten Berge and Pieter Kroonenberg.

References

Bentler, P. M. (1973). Assessment of developmental factor change at the individual and group level. In Nesselroade, J. A., Reese, H. W. (Eds.), Life-span developmental psychology: Methodological issues (pp. 145174). New York: Academic Press.CrossRefGoogle Scholar
Carroll, J. D. (1968). Generalization of canonical correlation analysis to three or more sets of variables. Proceedings of the 76th Convention of the American Psychological Association, 3, 227228.Google Scholar
Carroll, J. D., Arabie, P. (1980). Multidimensional scaling. Annual Review of Psychology, 31, 607649.CrossRefGoogle ScholarPubMed
Carroll, J. D., Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Carroll, J. D., Wish, M. (1974). Models and methods for three-way multidimensional scaling. In Krantz, D. H., Atkinson, R. C., Luce, R. D., Suppes, P. (Eds.), Contemporary developments in mathematical psychology, Vol. II: Measurement, psychophysics, and neural information processing (pp. 57105). San Francisco: Freeman & Co..Google Scholar
Doledec, S., Chessel, D. (1987). Rythmes saisonniers et composantes stationnelles en milieu aquatique. I.—Description d'un plan d'observation complet par projection de variables [Seasonal rhythms and stationary components in water environments. I.—Description of a complete observation scheme by projection of variables]. Acta Oecologia/Oecologia Generalis, 8, 403406.Google Scholar
Escofier, B., Pagès, J. (1983). Méthode pour l'analyse de plusieurs groupes de variables—Application a la caractérisation de vins rouges du Val de Loire [Method for the analysis of several groups of variables—Application to the characterization of red wines from the Loire valley]. Revue de Statistique Appliquée, 31, 4359.Google Scholar
Escofier, B., Pagès, J. (1984). L'analyse factorielle multiple [Multiple factor analysis], Paris: Université Pierre et Marie Curie.Google Scholar
Escoufier, Y. (1973). Le traitement des variables vectorielles [The treatment of vector-valued variables]. Biometrics, 29, 751760.CrossRefGoogle Scholar
Glaçon, F. (1981). Analyse conjointe de plusieurs matrices de données [Simultaneous analysis of several data matrices], France: University of Grenoble.Google Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325338.CrossRefGoogle Scholar
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics, 16, 184.Google Scholar
Harshman, R. A. (1972). PARAFAC2: Mathematical and technical notes. UCLA Working Papers in Phonetics, 22, 3144.Google Scholar
Harshman, R. A., Lundy, M. E. (1984). Data preprocessing and the extended PARAFAC model. In Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 216284). New York: Praeger.Google Scholar
Harshman, R. A., Lundy, M. E. (1984). The PARAFAC model for three-way factor analysis and multidimensional scaling. In Law, H. G., Synder, C. W., Hattie, J. A., McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 122215). New York: Praeger.Google Scholar
Jaffrennou, P. A. (1978). Sur l'analyse des familles finies de variables vectorielles [On the analysis of finite families of vector-valued variables], France: University of Saint-Étienne.Google Scholar
Kroonenberg, P. M. (1983). Three mode principal component analysis: Theory and applications, Leiden: DSWO press.Google Scholar
Kroonenberg, P. M. (1989). The analysis of multiple tables in factorial ecology: III Three-mode principal component analysis: “Analyse triadique complète”. Acta Oecologia/Oecologia Generalis, 10, 245256.Google Scholar
Kroonenberg, P. M., de Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 6997.CrossRefGoogle Scholar
Lavit, C. (1985). Application de la méthode STATIS [Application of the STATIS method]. Statistique et Analyse des Données, 10, 103116.Google Scholar
Lavit, C. (1988). Analyse conjointe de tableaux quantitatifs [Simultaneous analysis of quantitative data sets], Paris: Masson.Google Scholar
Lechevallier, F. (1987). L'Analyse de l'evolution dans STATIS: Une solution et des généralisations [The analysis of evolution in STATIS: A solution and some generalizations], Villeneuve-d'Ascq, France: Document de travail, UFR Sciences Economiques et Sociales.Google Scholar
Levin, J. (1966). Simultaneous factor analysis of several gramian matrices. Psychometrika, 31, 413419.CrossRefGoogle ScholarPubMed
L'Hermier des Plantes, H. (1976). Structuration des tableaux à trois indices de la statistique [Structuring statistical three-way data matrices], France: University of Montpellier.Google Scholar
Lundy, M. E., Harshman, R. A., Kruskal, J. B. (1989). A two-stage procedure incorporating good features of both trilinear and quadrilinear models. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 123130). Amsterdam: Elsevier Science Publishers.Google Scholar
Pontier, J., Pernin, M. O., & Pagès, M. (1985, May). LONGI: Une méthode d'analyse de données longitudinales multivariées [LONGI: A method for the analysis of longitudinal multivariate data]. Paper presented at the Journées de Statistique, Pau, France.Google Scholar
Sabatier, R. (1987). Méthodes factorielles en analyse des données: Approximations et prise en compte de variables concomitantes [Factorial methods in data analysis: Approximations and accounting for instrumental variables], France: University of Montpellier.Google Scholar
ten Berge, J. M. F., Kiers, H. A. L. (1991). Some clarifications of the CANDECOMP algorithm applied to INDSCAL. Psychometrika, 56, 317326.CrossRefGoogle Scholar
Thioulouse, J., Chessel, D. (1987). Les analyses multitableaus en écologie factorielle. I.—De la typologie d'état à la typologie de fonctionnement par l'analyse triadique [The analysis of multiple tables in factorial ecology. I.—From state typology to function typology by means of triadique analysis]. Acta Oecologia/Oecologia Generalis, 8, 463480.Google Scholar
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311.CrossRefGoogle ScholarPubMed
Tucker, L. R. (1972). Relations between multidimensional scaling and three-mode factor analysis. Psychometrika, 37, 327.CrossRefGoogle Scholar
Tucker, L. R., Messick, S. (1963). An individual differences model for multidimensional scaling. Psychometrika, 28, 333367.CrossRefGoogle Scholar
Weesie, J., Van Houwelingen, H. (1983). GEPCAM Users' manual: Generalized principal components analysis with missing values, The Netherlands: Institute of Mathematical Statistics, University of Utrecht.Google Scholar