Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T07:54:50.198Z Has data issue: true hasContentIssue false

Human Psychophysical Functions, an Update: Methods for Identifying their form; Estimating their Parameters; and Evaluating the Effects of Important Predictors

Published online by Cambridge University Press:  01 January 2025

Diana E. Kornbrot*
Affiliation:
University of Hertfordshire
*
Correspondence should be sent to Diana E. Kornbrot, Department of Psychology, University of Hertfordshire College Lane Hatfield, Hertfordshire, AL10 9AB, UK. Email: d.e.kornbrot@herts.ac.uk

Abstract

Stevens’ power law for the judgments of sensation has a long history in psychology and is used in many psychophysical investigations of the effects of predictors such as group or condition. Stevens’ formulation Ψ=aPn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varPsi = {aP}^{n}$$\end{document}, where Ψ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varPsi $$\end{document} is the psychological judgment, P is the physical intensity, and n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document} is the power law exponent, is usually tested by plotting log (Ψ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\varPsi )$$\end{document} against log (P). In some, but by no means all, studies, effects on the scale parameter, a\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a$$\end{document}, are also investigated. This two-parameter model is simple but known to be flawed, for at least some modalities. Specifically, three-parameter functions that include a threshold parameter produce a better fit for many data sets. In addition, direct non-linear computation of power laws often fit better than regressions of log-transformed variables. However, such potentially flawed methods continue to be used because of assumptions that the approximations are “close enough” as to not to make any difference to the conclusions drawn (or possibly through ignorance the errors in these assumptions). We investigate two modalities in detail: duration and roughness. We show that a three-parameter power law is the best fitting of several plausible models. Comparison between this model and the prevalent two parameter version of Stevens’ power law shows significant differences for the parameter estimates with at least medium effect sizes for duration.

Type
Original paper
Copyright
Copyright © 2014 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi:https://doi.org/10.1007/s11336-014-9418-9) contains supplementary material, which is available to authorized users.

References

Allan, L.G. (1983). Magnitude estimation of temporal intervals. Perception and Psychophysics, 33(1), 2942. doi:https://doi.org/10.3758/BF03205863.CrossRefGoogle ScholarPubMed
Anderson, N.H. (1970). Functional measurement and psychophysical judgment. Psychological Review, 77(3), 153.CrossRefGoogle ScholarPubMed
Beck, A., Ward, C., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561571. doi:https://doi.org/10.1016/S0010-440X(61)80020-5.CrossRefGoogle ScholarPubMed
Borg, G. (1962). Physical performance and perceived exertion. Lund, Sweden: Gleerup.Google Scholar
Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.Google Scholar
Borg, G., Hassmen, P., Lagerstrum, M. (1987). Perceived exertion related to heart rate and blood lactate during arm and leg exercise. European Journal of Applied Physiology and Occupational Physiology, 56(6), 679–685. doi:https://doi.org/10.1007/BF00424810.CrossRefGoogle Scholar
Borg, G., Lindblad, I., & Holmgren, A. (1981). Quantitative evaluation of chest pain. Acta Medica Scandinavica, 209 S6444345. doi:https://doi.org/10.1111/j.0954-6820.1981.tb03117.x.CrossRefGoogle Scholar
Borg, G., Van Den Burg, M., Hassmen, P., Kaijser, L., & Tanaka, S. (1987). Relationships between perceived exertion hr and hla in cycling running and walking. Scandinavian Journal of Sports Sciences, 9(3), 6978.Google Scholar
Borg, G.V., & Marks, L. (1983). Twelve meanings of the measure constant in psychophysical power functions. Bulletin of the Psychonomic Society, 21(1), 7375. doi:https://doi.org/10.3758/BF03329958.CrossRefGoogle Scholar
Edwards, A.L. (1983). Techniques of attitude scale construction. New York, NY: Irvington.Google Scholar
Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 51(4), 380417.CrossRefGoogle ScholarPubMed
Eisler, H. (1976). Experiments on subjective duration 1868–1975: A collection of power function exponents. Psychological Bulletin, 83(6), 11541171. doi:https://doi.org/10.1037/0033-2909.83.6.1154.CrossRefGoogle ScholarPubMed
Eisler, H., & Eisler, A.D. (1992). Time perception: Effects of sex and sound intensity on scales of subjective duration. Scandinavian Journal of Psychology, 33(4), 339358. doi:https://doi.org/10.1111/j.1467-9450.1992.tb00923.x.CrossRefGoogle ScholarPubMed
Ekman, G. (1959). Weber’s law and related functions. The Journal of Psychology, 47(2), 343352.CrossRefGoogle Scholar
Florentine, M., & Epstein, M. (2006). To honor stevens and repeal his law (for the auditory system. Paper presented at the Fechner Day 2006. Proceedings of the 22nd Annual Meeting of the International Society for Psychophysics, St. Albans, UK. http://www.ispsychophysics.org/fd/index.php/proceedings/article/view/332/324.Google Scholar
Fucci, D., Petrosino, L., Hallowell, B., Andra, L., & Wilcox, C. (1997). Magnitude estimation scaling of annoyance in response to rock music: Effects of sex and listeners’ preference. Perceptual and Motor Skills, 84(2), 663670.CrossRefGoogle ScholarPubMed
Galanter, E. (1962). The direct measurement of utility and subjective probability. The American Journal of Psychology, 75(2), 208–220. http://links.jstor.org/sici?sici=0002-9556.CrossRefGoogle Scholar
Galanter, E. (1990). Utility Functions for Nonmonetary Events. The American Journal of Psychology, 103(4), 449–470. http://www.jstor.org/stable/1423318.CrossRefGoogle Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory. Economerica, 47, 263. doi:https://doi.org/10.2307/1914185.CrossRefGoogle Scholar
Kornbrot, D.E., Donnelly, M., & Galanter, E. (1981). Estimates of utility function parameters from signal-detection experiments. Journal of Experimental Psychology-Human Perception and Performance, 7(2), 441458. doi:https://doi.org/10.1037/0096-1523.7.2.441.CrossRefGoogle Scholar
Kornbrot, D. E., Msetfi, R. M., & Grimwood, M. J. (2013). Time perception and depressive realism: judgment type, psychophysical functions and bias. PLoS ONE, 8(8), e71585. doi:https://doi.org/10.1371/journal.pone.0071585.CrossRefGoogle Scholar
Kornbrot, D. E., Penn, P., Petrie, H., Furner, S., & Hardwick, A. (2007). Roughness perception in haptic virtual reality for sighted and blind people. [Article]. Perception & Psychophysics, 69, pp. 502–512. doi:https://doi.org/10.3758/BF03193907, http://hdl.handle.net/2299/2959.CrossRefGoogle Scholar
Likert, R., Roslow, S., & Murphy, G. (1993). A simple and reliable method of scoring the Thurstone attitude scales. Personnel Psychology, 46(3), 689690. doi:https://doi.org/10.1111/j.1744-6570.1993.tb00893.x.CrossRefGoogle Scholar
Lindsay, D.R.J., & Norman, D.A. (1977). Human information processing. (3rd ed.). London: Academic.Google Scholar
Marks, L.E., & Cain, W.S. (1972). Perception of intervals and magnitudes for three prothetic continua. Journal of Experimental Psychology, 94(1), 617. doi:https://doi.org/10.1037/h0032746.CrossRefGoogle ScholarPubMed
Marks, L.E., & Stevens, J.C. (1966). Individual brightness functions. Perception and Psychophysics, 1(1), 1724. doi:https://doi.org/10.3758/BF03207815.CrossRefGoogle Scholar
Marks, L.E., & Stevens, J.C. (1968). The form of the psychophysical function near threshold. Perception and Psychophysics, 4(5), 315318. doi:https://doi.org/10.3758/BF03210523.CrossRefGoogle Scholar
McGraw, A.P., Larsen, J.T., Kahneman, D., & Schkade, D. (2010). Comparing gains and losses. Psychological Science, 21(10), 14381445. doi:https://doi.org/10.1177/0956797610381504.CrossRefGoogle ScholarPubMed
Mountcastle, V.B., Poggio, G.F., & Werner, G. (1963). The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. Journal of Neurophysiology, 26, 807834.CrossRefGoogle ScholarPubMed
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in health sciences education, 15(5), 625632. doi:https://doi.org/10.1007/s10459-010-9222-y.CrossRefGoogle ScholarPubMed
Sellin, T., & Wolfgang, M.E. (1964). The measurement of delinquency. New York, NY: Wiley.Google Scholar
Sellin, T., & Wolfgang, M.E. (1978). The measurement of delinquency. (2nd ed.). New York, NY: Wiley.Google Scholar
Steingrimsson, R. (2011). Evaluating a model of global psychophysical judgments for brightness: II. Behavioral properties linking summations and productions. Attention. Perception and Psychophysics, 73(3), 872885. doi:https://doi.org/10.3758/s13414-010-0067-5.CrossRefGoogle Scholar
Steingrimsson, R., & Luce, R.D. (2005). Evaluating a model of global psychophysical judgments. I: Behavioral properties of summations and productions. Journal of Mathematical Psychology, 49(4), 290307. doi:https://doi.org/10.3758/APP.71.8.1916.CrossRefGoogle Scholar
Steingrimsson, R., & Luce, R.D. (2005). Evaluating a model of global psychophysical judgments. II: Behavioral properties linking summations and productions. Journal of Mathematical Psychology, 49(4), 308319. doi:https://doi.org/10.1016/j.jmp.2005.03.001.CrossRefGoogle Scholar
Steingrimsson, R., & Luce, R.D. (2006). Empirical evaluation of a model of global psychophysical judgments: III. A form for the psychophysical function and intensity filtering. Journal of Mathematical Psychology, 50(1), 1529. doi:https://doi.org/10.1016/j.jmp.2005.11.005.CrossRefGoogle Scholar
Steingrimsson, R., & Luce, R.D. (2007). Empirical evaluation of a model of global psychophysical judgments: IV. Forms for the weighting function. Journal of Mathematical Psychology, 51(1), 2944. doi:https://doi.org/10.1016/j.jmp.2006.08.001.CrossRefGoogle Scholar
Steingrimsson, R., & Luce, R.D. (2012). Predictions from a model of global psychophysics about differences between perceptual and physical matches. Attention Perception and Psychophysics, 74(8), 16681680. doi:https://doi.org/10.3758/s13414-012-0334-8.CrossRefGoogle Scholar
Stevens, J.C. (1974). Families of converging power functions in psychophysics. In Moskowitz, H.R., Scharf, B., & Stevens, J.C. (Eds.), Sensation and measurement: Papers in honor of S. S. Stevens. Oxford, England: D. Reidel.Google Scholar
Stevens, J.C. (1990). Perceived roughness as a function of body locus. Attention Perception and Psychophysics, 47(3), 298304. doi:https://doi.org/10.3758/BF03205004.CrossRefGoogle ScholarPubMed
Stevens, J.C., & Marks, L.E. (1980). Cross-modality matching functions generated by magnitude estimation. Perception and Psychophysics, 27(5), 379389. doi:https://doi.org/10.3758/BF03204456.CrossRefGoogle ScholarPubMed
Stevens, J.C., & Marks, L.E. (1999). Stevens power law in vision: Exponents, intercepts, and thresholds. Fechner Day, 99, 8287.Google Scholar
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680. http://www.jstor.org/stable/1671815.CrossRefGoogle Scholar
Stevens, S.S. (1961). To honour Fechner and repeal his law. Science, 133, 8086. doi:https://doi.org/10.1126/science.133.3446.80.CrossRefGoogle Scholar
Stevens, S.S. (1975). Psychophysics. New York, NY: Wiley.Google Scholar
Stevens, S.S., & Galanter, E.H. (1957). Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54, 377411. doi:https://doi.org/10.1037/h0043680.CrossRefGoogle ScholarPubMed
Stevens’ Power Law. Retrieved August 18, 2013 from http://en.wikipedia.org/wiki/Stevens%27_power_law.Google Scholar
Teghtsoonian, R. (1971). On the exponents in Stevens’ law and the constant in Ekman’s law. Psychological Review, 78, 7180.CrossRefGoogle ScholarPubMed
Teghtsoonian, R. (2012). The standard model for perceived magnitude: A framework for (almost) everything known about it. American Journal of Psychology, 125(2), 165174. doi:https://doi.org/10.5406/amerjpsyc.125.2.0165.CrossRefGoogle Scholar
Tversky, A. (1967). Additivity, utility and subjective probability. Journal of Mathematical Psychology, 4, 175202.CrossRefGoogle Scholar
West, R., Ward, L., & Khosla, R. (2000). Constrained scaling: The effect of learned psychophysical scales on idiosyncratic response bias. Attention Perception and Psychophysics, 62(1), 137151. doi:https://doi.org/10.3758/BF03212067.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kornbrot supplementary material

Kornbrot supplementary material
Download Kornbrot supplementary material(File)
File 185.3 KB