Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T20:27:52.146Z Has data issue: false hasContentIssue false

Identifiability of Diagnostic Classification Models

Published online by Cambridge University Press:  01 January 2025

Gongjun Xu*
Affiliation:
University of Minnesota
Stephanie Zhang
Affiliation:
Google Inc.
*
Correspondence should be made to Gongjun Xu, School of Statistics, University of Minnesota, 313 Ford Hall, 224 Church St SE, Minneapolis, MN 55455 USA. Email: xuxxx360@umn.edu

Abstract

Diagnostic classification models (DCMs) are important statistical tools in cognitive diagnosis. In this paper, we consider the issue of their identifiability. In particular, we focus on one basic and popular model, the DINA model. We propose sufficient and necessary conditions under which the model parameters are identifiable from the data. The consequences, in terms of the consistency of parameter estimates, of fulfilling or failing to fulfill these conditions are illustrated via simulation. The results can be easily extended to the DINO model through the duality of the DINA and DINO models. Moreover, the proposed theoretical framework could be applied to study the identifiability issue of other DCMs.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechger, T. M., Verstralen, H. H., & Verhelst, N. D., (2002). Equivalent linear logistic test models. Psychometrika, 67 1123136CrossRefGoogle Scholar
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2014). Statistical analysis of q-matrix based diagnostic classification models. Journal of the American Statistical Association, (to appear).Google Scholar
Chiu, C-Y (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37 598618CrossRefGoogle Scholar
Chiu, C-YDouglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74 633665CrossRefGoogle Scholar
de la Torre, J. (2008). An empirically-based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45 343362CrossRefGoogle Scholar
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34 115130CrossRefGoogle Scholar
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76 179199CrossRefGoogle Scholar
de la Torre, J., & Douglas, J. A., (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69 33335310.1007/BF02295640CrossRefGoogle Scholar
DeCarlo, L. T., (2011). On the analysis of fraction subtraction data: The DINA model, classification, class sizes, and the Q-matrix. Applied Psychological Measurement, 35 826CrossRefGoogle Scholar
DeCarlo, L. T., (2012). Recognizing uncertainty in the Q-matrix via a bayesian extension of the DINA model. Applied Psychological Measurement, 36 6447468CrossRefGoogle Scholar
DiBello, L. V., Stout, W. F., Roussos, L. A.,Nichols, P. D., Chipman, S. F., & Brennan, R. L., (1995). Unified cognitive psychometric diagnostic assessment likelihood-based classification techniques. Cognitively diagnostic assessment, Hillsdale, NJErlbaum Associates 361390Google Scholar
Gabrielsen, A. (1978). Consistency and identifiability. Journal of Econometrics, 8 2261263CrossRefGoogle Scholar
Goodman, L. A., (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61 215231CrossRefGoogle Scholar
Henson, R. A., Templin, J. L., & Willse, J. T., (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74 191210CrossRefGoogle Scholar
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25 258272CrossRefGoogle Scholar
Koopmans, T. C.,Statistical inference in dynamic economic models, (1950). New York, USAWileyGoogle Scholar
Koopmans, T. C., & Reiersøl, O. (1950). The identification of structural characteristics. Annals of Mathematical Statistics, 21 165181CrossRefGoogle Scholar
Leighton, J. P., Gierl, M. J., & Hunka, S. M., (2004). The attribute hierarchy model for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41 205237CrossRefGoogle Scholar
Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36 548564CrossRefGoogle ScholarPubMed
Liu, J., Xu, G., & Ying, Z. (2013). Theory of self-learning Q-matrix. Bernoulli, 19 5A17901817CrossRefGoogle ScholarPubMed
Maris, G., & Bechger, T. M., (2004). Equivalent MIRID models. Psychometrika, 69 4627639CrossRefGoogle Scholar
Maris, G., & Bechger, T. M., (2009). Equivalent diagnostic classification models. Measurement, 7 4146Google Scholar
McHugh, R. B., (1956). Efficient estimatio and local identification in latent class analysis. Psychometrika, 21 331347CrossRefGoogle Scholar
Paulino, CDM, & de Bragançca Pereira, C. A., (1994). On identifiability of parametric statistical models. Journal of the Italian Statistical Society, 3 1125151CrossRefGoogle Scholar
Rupp, A. A., & Templin, J. L., (2008). Effects of Q-matrix misspecification on parameter estimates and misclassification rates in the DINA model. Educational and Psychological Measurement, 68 7898CrossRefGoogle Scholar
Rupp, A. A., Templin, J. L., & Henson, R. A., (2010). Diagnostic measurement: Theory, methods, and applications, New York, USAGuilford PressGoogle Scholar
San Martín, E., & Quintana, F. (2002). Consistency and identifiability revisited. Brazilian Journal of Probability and Statistics, 16 99106Google Scholar
San Martín, E., Rolin, J-M, & Castro, L. M., (2013). Identification of the 1PL model with guessing parameter: Parametric and semi-parametric results. Psychometrika, 78 2341379CrossRefGoogle ScholarPubMed
Tatsuoka, C. (2009). Diagnostic models as partially ordered sets. Measurement, 7 4953Google Scholar
Tatsuoka, K. K., (1983). Rule space: An approch for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20 345354CrossRefGoogle Scholar
Tatsuoka, K. K., (1985). A probabilistic model for diagnosing misconceptions in the pattern classification approach. Journal of Educational Statistics, 12 5573CrossRefGoogle Scholar
Tatsuoka, K. K., Frederiksen, N., Glaser, R., Lesgold, A., & Shafto, M. (1990). Toward an integration of item-response theory and cognitive error diagnosis. Diagnostic monitoring of skill and knowledge acquisition, Hillsdale, NJErlbaum 453488Google Scholar
Tatsuoka, K. K. (1991). Boolean algebra applied to determination of universal set of knowledge states (Research report No. RR-91-44-ONR). Princeton, NJ: Educational Testing Service.Google Scholar
Tatsuoka, K. K., (2009). Cognitive assessment: An introduction to the rule space method, New York, USA: RoutledgeCrossRefGoogle Scholar
Templin, J. L., & Henson, R. A., (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11 287305CrossRefGoogle ScholarPubMed
U.S. Department of Education. (2009, November). Race to the top program executive summary. Washington, D.C. Retrieved May 9, 2014 from http://www2.ed.gov/programs/racetothetop/executive-summary.pdf.Google Scholar
von Davier, M. (2005). A general diagnostic model applied to language testing data (Research report), Princeton, NJ: Educational Testing ServiceGoogle Scholar
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61 287307CrossRefGoogle ScholarPubMed
von Davier, M., & Yamamoto, K. (2004). A class of models for cognitive diagnosis. In 4th spearman conference. Philadelphia, PA.Google Scholar
Zhang, S. S., DeCarlo, L. T., & Ying, Z. (2013, March). Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based Cognitive Diagnosis Models. ArXiv e-prints.Google Scholar