Hostname: page-component-5f745c7db-f9j5r Total loading time: 0 Render date: 2025-01-06T07:37:17.307Z Has data issue: true hasContentIssue false

Identification of Confirmatory Factor Analysis Models of Different Levels of Invariance for Ordered Categorical Outcomes

Published online by Cambridge University Press:  01 January 2025

Hao Wu*
Affiliation:
Boston College
Ryne Estabrook
Affiliation:
Northwestern University
*
Correspondence should be made to Hao Wu, Boston College, Chestnut Hill, USA. Email: hao.wu.5@bc.edu

Abstract

This article considers the identification conditions of confirmatory factor analysis (CFA) models for ordered categorical outcomes with invariance of different types of parameters across groups. The current practice of invariance testing is to first identify a model with only configural invariance and then test the invariance of parameters based on this identified baseline model. This approach is not optimal because different identification conditions on this baseline model identify the scales of latent continuous responses in different ways. Once an invariance condition is imposed on a parameter, these identification conditions may become restrictions and define statistically non-equivalent models, leading to different conclusions. By analyzing the transformation that leaves the model-implied probabilities of response patterns unchanged, we give identification conditions for models with invariance of different types of parameters without referring to a specific parametrization of the baseline model. Tests based on this approach have the advantage that they do not depend on the specific identification condition chosen for the baseline model.

Type
Article
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Roger Millsap, whose work inspired this paper, unexpectedly passed away when we were preparing this manuscript. We would like to honor him for his pioneering work in measurement invariance.

References

Babakus, E., Ferguson, C. E., Jöreskog, K. G. (1987). (1992). The sensitivity of confirmatory maximum likelihood factor analysis to violations of measurement scale and distributional assumptions. Journal of Marketing Research, 24 (2), 222228.CrossRefGoogle Scholar
Baker, F. B. Item response theory parameter estimation techniques, New York: Marcel Dekker.CrossRefGoogle Scholar
Bernstein, I. H., Teng, G. (1989). Factoring items and factoring scales are different: Spurious evidence for multidimensionality due to item categorization. Psychological Bulletin, 105, 467477.CrossRefGoogle Scholar
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T. et al. (2011). OpenMx: An open source extended structural equation modeling framework. Psychometrika, 76, 306317.CrossRefGoogle ScholarPubMed
Carey, G. (2005). Cholesky problems. Behavioral Genetics, 35, 653665.CrossRefGoogle ScholarPubMed
Cheung, G. W., Lau, R. S. (2012). A direct comparison approach for testing measurement invariance. Organizational Research Methods, 15 (2), 167198.CrossRefGoogle Scholar
Cheung, G. W., Rensvold, R. (1998). Cross cultural comparisons using non-invariant measurement items. Applied Behavioral Science Review, 6, 93110.CrossRefGoogle Scholar
Cheung, G. W., Rensvold, R. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management, 25, 127.CrossRefGoogle Scholar
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 64, 247254.CrossRefGoogle Scholar
Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika, 74, 3343.Google Scholar
Drton, M. (2009). Likelihood ratio tests and singularities. The Annals of Statistics, 37 (2), 9791012.CrossRefGoogle Scholar
Estabrook, R., Tenenbaum, G., Eklund, R., Kamata, A. (2012). Factorial invariance: Tools and concepts for strengthening research. Measurement in sport and exercise psychology, Champaign, IL: Human Kinetics.Google Scholar
Jeffries, N. O. (2003). A note on ’Testing the number of components in a normal mixture’. Biometrika, 90 (4), 991994.CrossRefGoogle Scholar
Jöreskog, K. G., Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behaviorial Research, 36, 347387.CrossRefGoogle ScholarPubMed
Lubke, G. H., Muthén, B. O. (2004). Applying multiple group confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons. Structural Equation Modeling, 11 (4), 514534.CrossRefGoogle Scholar
Mehta, P. D., Neale, M. C., Flay, B. R. (2004). Squeezing interval change from ordinal panel data: Latent growth curves with ordinal outcomes. Psychological Methods, 9 (3), 301333.CrossRefGoogle ScholarPubMed
Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177185.CrossRefGoogle Scholar
Meredith, W. (1964). Rotation to achieve factorial invariance. Psychometrika, 29, 186206.Google Scholar
Meredith, W. (1993). Measurement invariance, factor analysis and factor invariance. Psychometrika, 58, 525543.CrossRefGoogle Scholar
Millsap, R. E., Meredith, W., Cudeck, R., MacCallum, R. C. (2007). Factorial invariance: Historical perspectives and new problems. Factor analysis at 100: Historical developments and future directions, Mahwah, NJ: Lawrence Erlbaum Associates. 131152.Google Scholar
Millsap, R. E., Yun-Tein, J. (2004). Assessing factorial invariance in ordered categorical measures. Multivariate Behavioral Research, 39 (3), 479515.CrossRefGoogle Scholar
Mislevy, R. J. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational Statistics, 11, 331.CrossRefGoogle Scholar
Muthén, B., Christofferson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. Psychometrika, 46, 407419.CrossRefGoogle Scholar
Muthén, B. O. (1984). A general structural equation model for dichotomous, ordered categorical and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Muthén, B. O., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171189.CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus Users Guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Neale, M. C., Hunter, M. D., Pritkin, J., Zahery, M., Brick, T. R., Kirkpatrick, R. M. et al. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81 (2), 535549.CrossRefGoogle ScholarPubMed
Oort, F. J. (1998). Simulation study of item bias detection with restricted factor analysis. Structural Equation Modeling, 5, 107124.CrossRefGoogle Scholar
R Development Core Team. (2013). R: A language and environment for statistical computing. http://www.R-project.org.Google Scholar
Rensvold, R. B., Cheung, G. W. (2001). Testing for metric invariance using structural equation models, solving the standardization problem. Research in Management, 1, 2550.Google Scholar
Strom, D. O., & Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics, 50, 11711177 (Corrected in. Biometrics, 51, 1196.)CrossRefGoogle Scholar
van der Linden, W. J. and Barrett, M. D. (2015). Linking item response model parameters. Psychometrika. doi:10.1007/s11336-015-9469-6.CrossRefGoogle Scholar
Vandenberg, R. J., Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3 (1), 469.CrossRefGoogle Scholar
Widaman, K. F., Reise, S. P., Bryant, K. J., Windle, M., West, S. G. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. The science of prevention: Methodological advances from alcohol and substance abuse research, Washington, DC: American Psychological Association. 281324.CrossRefGoogle Scholar
Wu, H., Neale, M. C. (2013). On the likelihood ratio tests in bivariate ACDE models. Psychometrika, 78 (3), 441463.CrossRefGoogle ScholarPubMed
Wu, H. (accepted) A note on the identifiability of fixed effect 3PL models. Psychometrika.Google Scholar
Yoon, M., Millsap, R. E. (2007). (2010). Detecting violations of factorial invariance using data-based specification searches: A Monte-Carlo study. Structural Equation Modeling, 14 (3), 435463.CrossRefGoogle Scholar