Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T03:37:43.045Z Has data issue: false hasContentIssue false

A Latent Transition Analysis Model for Latent-State-Dependent Nonignorable Missingness

Published online by Cambridge University Press:  01 January 2025

Sonya K. Sterba*
Affiliation:
Vanderbilt University
*
Correspondence should be made to Sonya K. Sterba, Quantitative Methods Program, Department of Psychology and Human Development, Vanderbilt University, Peabody #552, 230 Appleton Place, Nashville, TN 37203, USA. Email: sonya.sterba@vanderbilt.edu

Abstract

Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonignorable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous and current membership in high-delinquency states predicted adolescents’ membership in missingness states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA.

Type
Article
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, P. (2000). A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics, 56, 602608CrossRefGoogle ScholarPubMed
Albert, P., Follmann, D. (2003). A random effects transition model for longitudinal binary data with informative missingness. Statistica Neerlandica, 57, 100111CrossRefGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723CrossRefGoogle Scholar
Baggio, S., Studer, J., Deline, N’ Goran, Dupuis, M., Henchoz, Y., Mohler-Kuo, M., et al. (2014). Patterns and transitions in substance use among young Swiss men: A latent transition analysis approach. Journal of Drug Issues. doi:10.1177/0022042614526996.CrossRefGoogle Scholar
Bair-Merritt, M., Ghazarian, S., Burrell, L., Duggan, A. (2012). Patterns of intimate partner violence in mothers at-risk for child maltreatment. Journal of Family Violence, 27, 287294CrossRefGoogle ScholarPubMed
Beunckens, C., Molenberghs, G., Thijs, H., Verbeke, G. (2007). Incomplete hierarchical data. Statistical Methods in Medical Research, 16, 457492CrossRefGoogle ScholarPubMed
Bray, B., Lanza, S., Collins, L. (2010). Modeling relations among discrete developmental processes: A general approach to associative latent transition analysis. Structural Equation Modeling, 17, 541569CrossRefGoogle ScholarPubMed
Cain, A., Epler, A., Steinley, D., Sher, K. (2012). Concerns related to eating, weight, and shape: Typologies and transitions in men during the college years. International Journal of Eating Disorders, 45, 768775CrossRefGoogle ScholarPubMed
Carpenter, J., Pocock, S., Lamm, C. (2002). Coping with missing values in clinical trials: A model based approach applied to asthma trials. Statistics in Medicine, 21, 10431066CrossRefGoogle Scholar
Catts, H., Compton, D., Tomblin, J., Bridges, M. (2012). Prevalence and nature of late-emerging poor readers. Journal of Educational Psychology, 104, 166181CrossRefGoogle ScholarPubMed
Chen, B., Yi, G., Cook, R. (2011). Progressive multi-state models for informatively incomplete longitudinal data. Journal of Statistical Planning and Inference, 141, 8093CrossRefGoogle Scholar
Cleveland, M., Lanza, S., Ray, A., Turrisi, R., Mallett, K. (2012). Transitions in first-year college student drinking behaviors: Does pre-college drinking moderate the effects of parent- and peer-based intervention components?. Psychology of Addictive Behaviors, 26, 440450CrossRefGoogle ScholarPubMed
Cochran, G., Field, C., & Caetano, R. (2013). Changes in classes of injury-related risks and consequences of risk-level drinking: A latent transition analysis. Journal of Behavioral Health Services & Research,. doi:10.1007/s11414-013-9378-3.CrossRefGoogle Scholar
Collins, L., Lanza, S. (2010). Latent class and latent transition analysis, Hoboken, NJ: WileyGoogle Scholar
Collins, L., Wugalter, S. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27, 131157CrossRefGoogle Scholar
Cole, B., Bonetti, M., Zaslavsky, A., Gelber, R. (2005). A multistate Markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable missingness. Statistics in Medicine, 24, 23172334CrossRefGoogle ScholarPubMed
Cook, E., Pflieger, J., Connell, A., & Connell, C. (2014). Do specific transitional patterns of antisocial behavior during adolescence increase risk for problems in young adulthood? Journal of Abnormal Child Psychology. doi:10.1007/s10802-014-9880-y.CrossRefGoogle Scholar
Courtney, M., & Cusick, G. (2007). Crime during the transition to adulthood: How youth fare as they leave out-of-home care in Illinois, Iowa and Wisconsin. [Computer file].Google Scholar
Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138CrossRefGoogle Scholar
Diggle, P., Kenward, M.G. (1994). Informative drop-out in longitudinal data-analysis. Applied Statistics C, 43, 4993CrossRefGoogle Scholar
Enders, C.K. (2010). Applied missing data analysis, New York, NY: GuilfordGoogle Scholar
Enders, C.K. (2011). Missing not at random models for latent growth curve analyses. Psychological Methods, 16, 116CrossRefGoogle Scholar
Feldman, B., Rabe-Hesketh, S. (2012). Modeling achievement trajectories when attrition is informative. Journal of Educational and Behavioral Statistics, 37, 703736CrossRefGoogle Scholar
Flaherty, B.P. (2008). Testing the degree of cross-sectional and longitudinal dependence between two discrete dynamic processes. Developmental Psychology, 44, 468480CrossRefGoogle ScholarPubMed
Gottfredson, N., Bauer, D., Baldwin, S. (2014). Modeling change in the presence of nonrandomly missing data: Evaluating a shared parameter mixture model. Structural Equation Modeling, 21, 196209CrossRefGoogle ScholarPubMed
Groves, R., Dillman, D., Eltinge, J., Little, R. (2002). Survey nonresponse, New York: WileyGoogle Scholar
Haviland, A., Jones, B., Nagin, D. (2011). Group-based trajectory modeling extended to account for nonrandom participant attrition. Sociological Methods & Research, 40, 367390CrossRefGoogle Scholar
Hedeker, D., Gibbons, R.D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2, 6478CrossRefGoogle Scholar
Hinshaw, S., Lahey, B., Hart, E. (1993). Issues of taxonomy and comorbidity in the development of conduct disorder. Development and Psychopathology, 5, 3149CrossRefGoogle Scholar
Hopfer, S., Hecht, M., Lanza, S., Tan, X., Xu, S. (2013). Preadolescent drug use resistance skill profiles substance use, and substance use prevention. Journal of Primary Prevention, 34, 395404CrossRefGoogle ScholarPubMed
Ibrahim, J.G., Chen, M.-H., Lipsitz, S., Herring, A. (2005). Missing-data methods for generalized linear models: A comparative review. Journal of the American Statistical Association, 100, 332346CrossRefGoogle Scholar
Jackson, K., Sher, K., Schulenberg, J. (2005). Conjoint developmental trajectories of young adult alcohol and tobacco use. Journal of Abnormal Psychology, 114, 612626CrossRefGoogle ScholarPubMed
Jansen, I., Hens, N., Molenberghs, G. et.al (2006). The nature of sensitivity in missing not at random models. Computational Statistics & Data Analysis, 50, 830858CrossRefGoogle Scholar
Kroesen, M. (2014). Modeling the behavioral determinants of travel behavior: An application of latent transition analysis. Transportation Research, 65, 5667Google Scholar
Kurland, B., Heagerty, P. (2004). Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out. Statistics in Medicine, 23, 26732695CrossRefGoogle ScholarPubMed
Lahey, B., Loeber, R. (1994). Framework for a developmental model of oppositional defiant disorder and conduct disorder. In Routh, D.K. (Ed.), Disruptive behavior disorders in childhood, New York: PlenumGoogle Scholar
Langeneine, R., van de Pol, F. (1990). A unifying framework for Markov modeling in discrete space and discrete time. Sociological Methods and Research, 18, 416441CrossRefGoogle Scholar
Lanza, S., Collins, L. (2008). A new SAS procedure for latent transition analysis: Transitions in dating and sexual risk behavior. Developmental Psychology, 44, 446456CrossRefGoogle ScholarPubMed
Lee, S., Song, X.-Y. (2003). Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data. Journal of Classification, 20, 221255CrossRefGoogle Scholar
Lee, B., Vondracek, F. (2014). Teenage goals and self-efficacy beliefs as precursors of adult career and family outcomes. Journal of Vocational Behavior, 85, 228237CrossRefGoogle ScholarPubMed
Lin, H., Liu, D., Zhou, X. (2010). A correlated random-effects model for normal longitudinal data with nonignorable missingness. Statistics in Medicine, 29, 236247CrossRefGoogle ScholarPubMed
Little, R.J.A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 11121121CrossRefGoogle Scholar
Little, R.J.A. et.al (2008). Selection and pattern-mixture models. In Fitzmaurice, G. et.al (Eds.), Advances in longitudinal data analysis (pp. 409431), London: CRC PressCrossRefGoogle Scholar
Little, R.J.A., D’Agostino, R., Cohen, M., Dickerson, K., Emerson, S., & Farrar, J. et al. (2012). The prevention and treatment of missing data in clinical trials: Special report. The New England Journal of Medicine, 1355–1360.CrossRefGoogle Scholar
Little, R.J.A., Rubin, D.B. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models: Comment. Journal of the American Statistical Association, 94, 11301132Google Scholar
Little, R.J.A., Rubin, D.B. (2002). Statistical analysis with missing data, Hoboken, NJ: WileyCrossRefGoogle Scholar
Liu, X., Waternaux, C., Petkova, E. (1999). Influence of human immunodeficiency virus infection on neurological impairment: An analysis of longitudinal binary data with informative drop-out. Applied Statistics, 48, 103115Google Scholar
Loeber, R., Keenan, K., Zhang, Q. (1997). Boys’ experimentation and persistence in developmental pathways toward serious delinquency. Journal of Child and Family Studies, 6, 321357CrossRefGoogle Scholar
Lu, Z.L., Zhang, Z., Lubke, G. (2011). Bayesian inference for growth mixture models with latent class dependent missing data. Multivariate Behavioral Research, 46, 567597CrossRefGoogle ScholarPubMed
Lu, Z.L., Zhang, Z. (2014). Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application. Computational Statistics & Data Analysis, 71, 220240CrossRefGoogle Scholar
Mackesy-Amiti, M., Ouellet, L., Finnegan, L., Hagan, H., Golub, E., Latka, M., Wagner, K., Garfein, R. (2014). Transitions in latent classes of sexual risk behavior among young injection drug users following HIV prevention intervention. AIDS Behavior, 18, 464472CrossRefGoogle ScholarPubMed
Mallinckrodt, C., Sanger, T., Dube, S., DeBrota, D., Molenberghs, G., Carroll, R., Potter, W., Tollefson, G. (2003). Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. Biological Psychiatry, 53, 754760CrossRefGoogle ScholarPubMed
McLachlan, G., Peel, D. (2000). Finite mixture models, New York, NY: WileyCrossRefGoogle Scholar
McMillen, J., Zima, B., Scott, L. et.al (2005). Prevalence of psychiatric disorders among older youths in the foster care system. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 8895CrossRefGoogle ScholarPubMed
Meier, M., Caspi, A., Houts, R., Slutske, W., Harrington, H., Jackson, K., Belsky, D., Poulton, R., Moffitt, T. (2013). Prospective developmental subtypes of alcohol dependence from age 18 to 32 years: Implications for nosology, etiology, and intervention. Development and Psychopathology, 25, 785800CrossRefGoogle Scholar
Minini, P., Chavance, M. (2003). Sensitivity analysis of longitudinal normal data. Statistics in Medicine, 23, 10391054CrossRefGoogle Scholar
Moffitt, T.E., Arseneault, L., Jaffee, S. et.al (2008). DSM-V conduct disorder: Research needs for an evidence base. Journal of Child Psychology & Psychiatry, 49, 333CrossRefGoogle ScholarPubMed
Molenberghs, G., Kenward, M.G. (2007). Missing data in clinical studies, Chichester: WileyCrossRefGoogle Scholar
Molenberghs, G., Verbeke, G. (2005). Models for discrete longitudinal data, New York: SpringerGoogle Scholar
Muthén, B., Asparouhov, T., Hunter, A.M., Leuchter, A.F. (2011). Growth modeling with nonignorable dropout: Alternative analyses of the STAR*D antidepressant trial. Psychological Methods, 16, 1733CrossRefGoogle Scholar
Muthén, L.K., Muthén, B.O. (1998–2014). Mplus 7 users guide. Los Angeles, CA: Muthén & Muthén.Google Scholar
Nagin, D.S. (2005). Group-based modeling of development, Cambridge, MA: Harvard PressCrossRefGoogle Scholar
Nagin, D.S., Tremblay, R.E. (2001). Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychological Methods, 6, 1834CrossRefGoogle ScholarPubMed
National Research Council (2010). The prevention and treatment of missing data in clinical trials. In Panel on handling missing data in clinical trials. Division of Behavioral and Social Sciences and Education. Washington, D.C.: National Academies Press.Google Scholar
Nylund, K., Asparouhov, T., Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte-Carlo simulation study. Structural Equation Modeling, 14, 535569CrossRefGoogle Scholar
Nylund, K., Muthén, B. Nishina, A., Bellmore, A., Graham, S. (2006). Stability and instability of peer victimization during middle school: Using latent transition analysis with covariates, distal outcomes, and modeling extensions. www.statmodel.com.Google Scholar
Raftery, A. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111163CrossRefGoogle Scholar
Reboussin, B.A., Reboussin, D.M., Liang, K., Anthony, J.C. (1998). Latent transition modeling of progression of health risk behaviors. Multivariate Behavioral Research, 33, 457478CrossRefGoogle Scholar
Rizopoulos, D., Verbeke, G., Lesaffre, E., Vanrenterghem, Y. (2008). A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics, 64, 611619CrossRefGoogle ScholarPubMed
Rodgers, S., Ajdacic-Gross, V., Muller, M., Hengartner, M., Holtforth, M., Angst, J., Rossler, W. (2013). The role of sex on stability and change of depression symptom subtypes over 20 years: A latent transition analysis, European Archives of Psychiatry: DOIGoogle Scholar
Rotnitzky, A., Robins, J., Scharfstein, D. (1998). Semiparametric regression for repeated outcomes with nonignorable nonresponse. Journal of the American Statistical Association, 93, 13211339CrossRefGoogle Scholar
Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics, 59, 829836CrossRefGoogle ScholarPubMed
Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581592CrossRefGoogle Scholar
Schafer, J.L., Graham, J.W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177CrossRefGoogle ScholarPubMed
Schwarz, G.E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464CrossRefGoogle Scholar
Soto-Ramirez, N., Ziyab, A., Karmaus, W., Zhang, H., Kurukulaaratchy, R., Ewart, S., Arshad, S. (2013). Epidemiologic methods of assessing asthma and wheezing episodes in longitudinal studies: Measures of change and stability. Journal of Epidemiology, 23, 399410CrossRefGoogle ScholarPubMed
Sterba, S.K. (2013). Understanding linkages among mixture models. Multivariate Behavioral Research, 48, 775815CrossRefGoogle ScholarPubMed
Sterba, S.K. & Gottfredson, N. (2014). Diagnosing global case influence on MAR versus MNAR model comparisons. Structural Equation Modeling, In press.Google Scholar
Sterba, S.K., Pek, J. (2012). Individual influence on model selection. Psychological Methods, 17, 582599CrossRefGoogle ScholarPubMed
Ten Have, T., Kunselman, A., Pulkstenis, E., Landis, J. (1998). Mixed effects logistic regression models for longitudinal binary response data with informative drop-out. Biometrics, 54, 367383CrossRefGoogle ScholarPubMed
Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., Curran, D. (2002). Strategies to fit pattern-mixture models. Biostatistics, 3, 245265CrossRefGoogle ScholarPubMed
Tofighi, D., Enders, C. (2007). Identifying the correct number of classes in growth mixture models. In Hancock, G.R., Samuelsen, K.M. (Eds.), Advances in latent variable mixture models (pp. 317341), Greenwich, CT: Information AgeGoogle Scholar
Velicer, W., Martin, R., Collins, L. (1996). Latent transition analysis for longitudinal data. Addiction, 91, S197S209CrossRefGoogle ScholarPubMed
Verbeke, G., Lessafre, E., Spiessens, B. (2001). The practical use of different strategies to handle dropout in longitudinal studies. Drug Information Journal, 35, 419434CrossRefGoogle Scholar
Williford, A., Boulton, A., Jenson, J. (2014). Transitions between subclasses of bullying and victimization when entering middle school. Aggressive Behavior, 40, 2441CrossRefGoogle ScholarPubMed
Witkiewitz, K., Villarroel, N. (2009). Dynamic association between negative affect and alcohol lapses following alcohol treatment. Journal of Consulting and Clinical Psychology, 77, 633644CrossRefGoogle ScholarPubMed
Witkiewitz, K. (2008). Lapses following alcohol treatment: Modeling the falls from the wagon. Journal of Studies on Alcohol and Drugs, 69, 594604CrossRefGoogle ScholarPubMed
White, T., Erosheva, E. (2013). Using group-based latent class transition models to analyze chronic disability data from the National Long-Term Care Survey 1984–2004. Statistics in Medicine, 32, 35693589CrossRefGoogle ScholarPubMed
Wu, M., Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175188CrossRefGoogle Scholar
Xu, S., Blozis, S. (2011). Sensitivity analyses of mixed models for incomplete longitudinal data. Journal of Educational and Behavioral Statistics, 36, 237256CrossRefGoogle Scholar
Yang, M., Maxwell, S. (2014). Treatment effects in randomized longitudinal trials with different types of nonignorable dropout. Psychological Methods, 19, 188210CrossRefGoogle ScholarPubMed
Yang, X., Shoptaw, S., Nie, K., Liu, J., Belin, T. (2007). Markov transition models for binary repeated measures with ignorable and nonignorable missing values. Statistical Methods in Medical Research, 16, 347364CrossRefGoogle Scholar
Zhang, Z., Wang, L. (2012). A note on the robustness of a full Bayesian method for nonignorable missing data analysis. Brazilian Journal of Probability and Statistics, 26, 244264CrossRefGoogle Scholar
Supplementary material: File

Sterba supplementary material

Sterba supplementary material
Download Sterba supplementary material(File)
File 213.9 KB