Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T07:53:03.820Z Has data issue: true hasContentIssue false

Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis

Published online by Cambridge University Press:  01 January 2025

Carl F. Falk*
Affiliation:
University of California, Los Angeles (UCLA)
Li Cai
Affiliation:
CRESST/University of California, Los Angeles
*
Correspondence should be made to Carl F. Falk, Graduate School of Education & Information Studies, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1521, USA Email: cffalk@gmail.com

Abstract

We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang’s (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock–Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.

Type
Article
Copyright
Copyright © 2014 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamowicz, M., Ramsay, J.O. (1992). Multicategorical spline model for item response theory. Psychometrika, 57(1), 527CrossRefGoogle Scholar
Baker, F.B., Kim, S.-H. (2004). Item response theory: Parameter estimation techniques, (2nd ed.). New York: Marcel DekkerCrossRefGoogle Scholar
Bertsekas, D.P. (1996). Constrained optimization and Lagrange multiplier methods, Belmont, MA: Athena ScientificGoogle Scholar
Birnbaum, A. 1968. Some latent trait models. In Lord, F., Novick, M.R. (Eds.), Statistical theories of mental test scores (pp. 395479). Reading, MA: Addison-WesleyGoogle Scholar
Bock, R.D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459CrossRefGoogle Scholar
Bock, R.D., Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179197CrossRefGoogle Scholar
Bock, R.D., Mislevy, R.J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6, 431444CrossRefGoogle Scholar
Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581612CrossRefGoogle Scholar
Cai, L., Yang, J.S., Hansen, M. (2011). Generalized item bifactor analysis. Psychological Methods, 16(3), 221248CrossRefGoogle ScholarPubMed
Duncan, K.A., MacEachern, S.N. (2008). Nonparametric Bayesian modelling for item response. Statistical Modelling, 8(1), 4166CrossRefGoogle Scholar
Duncan, K.A., MacEachern, S.N. 2013. Nonparametric Bayesian modeling of item response curves with a three-parameter logistic prior mean. In Edwards, M.C., MacCallum, R.C. (Eds), Current topics in the theory and application of latent variable models, (pp. 108125). New York, NY: RoutledgeGoogle Scholar
Elphinstone, C. D. (1985). A method of distribution and density estimation. Unpublished doctoral dissertation, University of South Africa.Google Scholar
Hansen, M., Cai, L., Stucky, B. D., Tucker, J. S., Shadel, W. G., & Edelen, M. O. (2014). Methodology for developing and evaluating the PROMIS smoking item banks. Nicotine & Tobacco Research, 16, S175S189.CrossRefGoogle ScholarPubMed
Heinzmann, D. (2005). A filtered polynomial approach to density estimation. Unpublished master’s thesis, Institute of Mathematics, University of Zurich.Google Scholar
Heinzmann, D. (2008). A filtered polynomial approach to density estimation. Computational Statistics, 23, 343360CrossRefGoogle Scholar
Liang, L. (2007). A semi-parametric approach to estimating item response functions. Unpublished doctoral dissertation, Department of Psychology, The Ohio State University.Google Scholar
Lord, F.M., Novick, M.R. (1968). Statistical theories of mental test scores, Reading, MA: Addison-WesleyGoogle Scholar
Mazza, A., Punzo, A., & McGuire, B. (2013). KernSmoothIRT: Non-parametric item response theory. R Package Version 5.0. Retrieved from http://CRAN.R-project.org/package=KernSmoothIRT.Google Scholar
Mislevy, R.J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359381CrossRefGoogle Scholar
Miyazaki, K., Hoshino, T. (2009). A Bayesian semiparametric item response model with Dirichlet process priors. Psychometrika, 74(3), 375393CrossRefGoogle Scholar
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159176CrossRefGoogle Scholar
Orlando, M., Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 5064CrossRefGoogle Scholar
Qin, L. (1998). Nonparametric Bayesian models for item response data. Unpublished doctoral dissertation, The Ohio State University.Google Scholar
Ramsay, J.O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56(4), 611630CrossRefGoogle Scholar
Ramsay, J. O. (2000). TestGraf: A program for the graphical analysis of multiple choice test and questionnaire data [Computer software].Google Scholar
Ramsay, J.O., Abrahamowicz, M. (1989). Binomial regression with monotone splines: A psychometric application. Journal of the American Statistical Association, 84(408), 906915CrossRefGoogle Scholar
Ramsay, J.O., Winsberg, S. (1991). Maximum marginal likelihood estimation for semiparametric item analysis. Psychometrika, 56(3), 365379CrossRefGoogle Scholar
R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria. Retrieved from http://www.R-project.org. ISBN 3-900051-07-0.Google Scholar
Rossi, N., Wang, X., Ramsay, J.O. (2002). Nonparametric item response estimates with the EM algorithm. Journal of Educational and Behavioral Statistics, 27(3), 291317CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric Monographs, 17, 1100.Google Scholar
Samejima, F. (1977). A method of estimating item characteristic functions using the maximum likelihood estimate of ability. Psychometrika, 42, 163191.CrossRefGoogle Scholar
Samejima, F. (1979). A new family of models for the multiple choice item (Technical Report No. 79–4). Knoxville: University of Tennessee, Department of Psychology.CrossRefGoogle Scholar
Samejima, F. (1984). A plausibility function of Iowa Vocabulary Test items estimated by the simple sum procedure of the conditional P.D.F. approach (Technical Report No. 84–1). Knoxville: University of Tennessee, Department of Psychology.Google Scholar
Santor, D.A., Ramsay, J.O., Zuroff, D.C. (1994). Nonparametric item analyses of the Beck Depression Inventory: Evaluating gender item bias and response option weights. Psychological Assessment, 6(3), 255270CrossRefGoogle Scholar
Santor, D.A., Zuroff, D.C., Ramsay, J.O., Cervantes, P., Palacios, J. (1995). Examining scale discriminability in the BDI and CES-D as a function of depressive severity. Psychological Assessment, 7(2), 131139CrossRefGoogle Scholar
Shadel, W.G., Edelen, M., Tucker, J.S. (2011). A unified framework for smoking assessment: The PROMIS smoking initiative. Nicotine & Tobacco Research, 13(5), 399400CrossRefGoogle ScholarPubMed
Sijtsma, K., Debets, P., Molenaar, I. (1990). Mokken scale analysis for polychotomous items: Theory, a computer program and an empirical application. Quality and Quantity, 24, 173188CrossRefGoogle Scholar
Thissen, D., Cai, L., Bock, R.D. (2010). The nominal categories item response model. In Nering, M., Ostini, R. (Eds.), Handbook of polytomous item response theory models: Developments and applications (pp. 4375), New York, NY: Taylor & FrancisGoogle Scholar
Thissen, D., Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577CrossRefGoogle Scholar
Thissen, D., Steinberg, L., Kuang, D. (2002). Quick and easy implementation of the Benjamini–Hochberg procedure for controlling the false positive rate in multiple comparisons. Journal of Educational and Behavioral Statistics, 27, 7783CrossRefGoogle Scholar
van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20, 119.Google Scholar
Woods, C.M. (2006). Ramsay-curve item response theory (RC-IRT) to detect and correct for nonnormal latent variables. Psychological Methods, 11, 253270CrossRefGoogle ScholarPubMed
Woods, C.M. (2007). Empirical histograms in item response theory with ordinal data. Educational and Psychological Measurement, 67, 7387CrossRefGoogle Scholar
Woods, C.M. (2007). Ramsay curve IRT for Likert-type data. Applied Psychological Measurement, 31(3), 195212CrossRefGoogle Scholar
Woods, C.M. (2008). Ramsay curve item response theory for the three-parameter item response theory model. Applied Psychological Measurement, 36(6), 447465CrossRefGoogle Scholar
Woods, C.M., Lin, N. (2008). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33(2), 102117CrossRefGoogle Scholar
Woods, C.M., Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71, 281301CrossRefGoogle ScholarPubMed