Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T07:25:48.992Z Has data issue: true hasContentIssue false

OpenMx 2.0: Extended Structural Equation and Statistical Modeling

Published online by Cambridge University Press:  01 January 2025

Michael C. Neale*
Affiliation:
Virginia Commonwealth University
Michael D. Hunter
Affiliation:
University of Oklahoma
Joshua N. Pritikin
Affiliation:
University of Virginia
Mahsa Zahery
Affiliation:
Virginia Commonwealth University
Timothy R. Brick
Affiliation:
Pennsylvania State University
Robert M. Kirkpatrick
Affiliation:
Virginia Commonwealth University
Ryne Estabrook
Affiliation:
Northwestern University
Timothy C. Bates
Affiliation:
University of Edinburgh
Hermine H. Maes
Affiliation:
Virginia Commonwealth University
Steven M. Boker
Affiliation:
University of Virginia
*
Correspondence should be made to Michael C. Neale, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, USA. Email: neale@vcu.edu

Abstract

The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.

Type
Article
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberdour, M. (2007). Achieving quality in open-source software. Software, IEEE, 24(1), 5864CrossRefGoogle Scholar
Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. Sociological Methodology, 16, 187–212. Retrieved November 26, 2014, from http://www.jstor.org/stable/270923.Google Scholar
Bates, T. C. (2013). umx: A help package for structural equation modeling in openmx [Computer software manual], Edinburgh, UK. Retrieved November 26, 2014, from http://github.com/tbates/umx/ (version 0.6).Google Scholar
Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246CrossRefGoogle ScholarPubMed
Boker, S., McArdle, J.J., Neale, M.C. (2002). An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174194CrossRefGoogle Scholar
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2009). OpenMx: Multipurpose software for statistical modeling, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from http://openmx.psyc.virginia.edu.Google Scholar
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., ... Fox, J. (2012). OpenMx: Multipurpose software for statistical modeling, version 1.2, University of Virginia, Department of Psychology, Charlottesville, VA. Retrieved November 26, 2014, from http://openmx.psyc.virginia.edu.Google Scholar
Browne, M., & Zhang, G. (2010). DyFA 3.00 user guide. Retrieved December 2, 2014, from http://faculty.psy.ohio-state.edu/browne/software.php.Google Scholar
Cheung, M. W.-L. (2014). metaSEM: Meta-analysis using structural equation modeling [Computer software manual]. Retrieved November 26, 2014, from OpenMx 2.0 28 http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/ (R package version 0.9-0).Google Scholar
Chow, S.-M., Grimm, K.J., Filteau, G., Dolan, C.V., McArdle, J.J. (2013). Regime-switching bivariate dual change score model. Multivariate Behavioral Research, 48(4), 463502CrossRefGoogle ScholarPubMed
Dolan, C. V. (2005). MKFM6: Multi-group, multi-subject stationary time series modeling based on the Kalman filter. Retrieved November 27, 2014, from http://tinyurl.com/MKFM6Dolan.Google Scholar
Ghalanos, A., & Theussl, S. (2012). RSOLNP: General non-linear optimization using augmented lagrange multiplier method [Computer software manual]. (R package version 1.14.).Google Scholar
Gill, P. E., Murray, W., Saunders, M. A., & Wright, M. H. (1986). User’s guide for NPSOL (version 4.0): A FORTRAN package for nonlinear programming (Technical Report), Department of Operations Research, Stanford University.Google Scholar
Gu, F., Preacher, K.J., Wu, W., Yung, Y.-F. (2014). A computationally efficient state space approach to estimating multilevel regression models and multilevel confirmatory factor models. Multivariate Behavioral Research, 49(2), 119129CrossRefGoogle ScholarPubMed
Hamagami, F., McArdle, J.J. (2007). Dynamic extensions of latent difference score models. In Boker, S.M., Wenger, M.J. (Eds.), Data analytic techniques for dynamical systems, Mahwah, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
Henderson, R.L. (1995). Job scheduling under the Portable Batch System. In Feitelson, D.G., Rudolph, L. (Eds.), Job scheduling strategies for parallel processing (pp. 279294), Berlin: SpringerCrossRefGoogle Scholar
Hunter, M. D. (2012, July 9–12). The addition of LISREL specification to OpenMx. Presented at the 2012 Annual International Meeting of the Psychometric Society, Lincoln, NE.Google Scholar
Hunter, M. D. (2014, May 22–25). Extended structural equations and state space models OpenMx 2.0.29 when data are missing at random. Presented at the 2014 Annual Meeting of the Association for Psychological Science, San Francisco, CA.Google Scholar
Ihaka, R., Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299314CrossRefGoogle Scholar
Johnson, S. G. (2010). The NLopt nonlinear-optimization package. R package. Retrieved November 26, 2014, from http://ab-initio.mit.edu/nlopt.Google Scholar
Jöreskog, K. G., & Sörbom, D. (1999). Lisrel 8: User’s reference guide. Lincolnwood, IL: Scientific Software International.Google Scholar
Jöreskog, K. G., & Van Thillo, M. (1972). LISREL: A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables. ETS Research Bulletin Series. doi:10.1002/j.2333-8504.1972.tb00827.x.CrossRefGoogle Scholar
King, L.A., King, D.W., McArdle, J.J., Saxe, G.N., Doron-LaMarca, S., Orazem, R.J. (2006). Latent difference score approach to longitudinal trauma research. Journal of Traumatic Stress, 19, 771785CrossRefGoogle ScholarPubMed
Koopman, S.J., Shephard, N., Doornik, J.A. (1999). Statistical algorithms for models in state space using SsfPack 2.2. Econometrics Journal, 2(1), 113166CrossRefGoogle Scholar
Maruyama, G.M. (1998). Basics of structural equation modeling, Thousand Oaks, CA: SageCrossRefGoogle Scholar
MATLAB. (2014). Version 8.3 (R2014a). Natick, MA: The MathWorks Inc.Google Scholar
McArdle, J.J., Boker, S. (1990). Rampath, Hillsdale, NJ: Lawrence ErlbaumGoogle Scholar
McArdle, J.J., Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In Collins, L., Sayer, A. (Eds.), New methods for the analysis of change (pp. 137176), Washington, DC: American Psychological AssociationGoogle Scholar
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251.CrossRefGoogle Scholar
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry, VCU.Google Scholar
Petris, G. (2010). A R package for dynamic linear models. Journal of Statistical Software, 36(12), 116CrossRefGoogle Scholar
Petris, G., Petrone, S. (2011). State space models in R. Journal of Statistical Software, 41(4), 125CrossRefGoogle Scholar
Pritikin, J. N., Hunter, M. D., & Boker, S. (in press). Modular open-source software for Item Factor Analysis. Educational and Psychological Measurement.Google Scholar
R Core Team. (2014). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved November 26, 2014, from http://www.R-project.org/.Google Scholar
Roweis, S., Ghahramani, Z. (1998). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305345CrossRefGoogle Scholar
Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., & Mansmann, U. (2009). State-of-the-art in parallel computing with R. Journal of Statistical Software, 47(1).CrossRefGoogle Scholar
The Numerical Algorithms Group (NAG). (n.d.). The NAG Library. Retrieved November 26, 2014, from http://www.nag.com. Oxford, UK.Google Scholar
Tucker, L.R., Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 110CrossRefGoogle Scholar
von Oertzen, T., Brandmaier, A., & Tsang, S. (in press). Structural equation modeling with ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}nyx. Structural Equation Modeling: A Multidisciplinary Journal.Google Scholar
Whaley, R. C., & Dongarra, J. J. (1998). Automatically tuned linear algebra software. In: Proceedings of the 1998 ACM/IEEE conference on supercomputing (pp. 1–27).Google Scholar
Ye, Y. (1987). Interior algorithms for linear, quadratic, and linearly constrained non-linear programming (Unpublished doctoral dissertation). Department of ESS, Stanford University.Google Scholar