Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T00:23:28.202Z Has data issue: false hasContentIssue false

Marine Radiocarbon Reservoir Effect of Coastal Waters Off Cape Verde Archipelago

Published online by Cambridge University Press:  18 July 2016

António M Monge Soares*
Affiliation:
Laboratório de Radiocarbono, Grupo de Química Analitica e Ambiental, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal.
José M Matos Martins
Affiliation:
Laboratório de Radiocarbono, Grupo de Química Analitica e Ambiental, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal. Universidade do Algarve, Faculdade de Ciências e Tecnologia (Campus de Gambelas, Faro), Portugal.
João Luís Cardoso
Affiliation:
Universidade Aberta (Lisboa), Centro de Estudos Arqueológicos do Concelho de Oeiras, Câmara Municipal de Oeiras, Fábrica da Pólvora de Barcarena, Estrada das Fontainhas, 2745-615 Barcarena, Portugal.
*
Corresponding author. Email: amsoares@itn.pt.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quantification of the marine radiocarbon reservoir effect (ΔR) is essential in order to calibrate conventional 14C dates from marine shell samples with reliability. ΔR also provides information concerning the intensity of coastal upwelling in marine regions influenced by this phenomenon. 14C ages of closely associated marine samples (mollusk shells) and terrestrial samples (goat bones) from São Vicente Island, Cape Verde Archipelago, permitted the first calculation of the marine 14C reservoir effect in this region. A ΔR weighted mean value of 70 ± 70 14C yr was obtained. This value is in accordance with the previously published oceanographic conditions of the region indicating the existence of a seasonal active upwelling regime.

Type
Methods and Developments
Copyright
Copyright © The American Journal of Science 

References

Ascough, P, Cook, G, Dugmore, A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29(4):532–47.Google Scholar
Cardoso, JL, Soares, AMM, Reiner, F, Guerreiro, A, Barradas, C, Costa, R, Carvalho, C. 2003/2004. O concheiro de Salamansa (ilha de São Vicente, arquipélago de Cabo Verde): nota preliminar. Portugalia Nova Série 23:221–31. In Portuguese.Google Scholar
Coleman, DC, Fry, B. 1991. Carbon Isotope Techniques. San Diego: Academic Press, Inc. Google Scholar
Diffenbaugh, NS, Sloan, LC, Snyder, MA. 2003. Orbital suppression of wind-driven upwelling in the California Current at 6 ka. Paleoceanography 18:1051, doi: 10.1029/2002PA000865.Google Scholar
Ingram, BL. 1998. Differences in radiocarbon age between shell and charcoal from a Holocene shellmound in northern California. Quaternary Research 49(1):102–10.Google Scholar
Kennett, DJ, Ingram, BL, Erlandson, JM, Walker, P. 1997. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, southern California. Journal of Archaeological Science 24(11):1051–9.CrossRefGoogle Scholar
Láiz, I, Sangrà, P, Pelegrí, JL. 2000. Variabilidad estacional del borde oriental del Giro Subtropical del Atlántico Norte. 3° Simpósio sobre a Margem Ibérica Atlântica. p 159–60. In Spanish.Google Scholar
Longin, R. 1970. Extraction du collagene des os fossils pour leur datation par la methode du Carbone 14 [these 3e cycle]. Lyon: Faculté des Sciences de l'Université de Lyon. In French.Google Scholar
Machín, F, Hernández-Guerra, A, Pelegrí, JL. 2006. Mass fluxes in the Canary Basin. Progress in Oceanography 70(2–4):416–47.Google Scholar
Ndeye, M. 2008. Marine reservoir ages in northern Senegal and Mauritania coastal waters. Radiocarbon 50(2):281–8.CrossRefGoogle Scholar
Nykjaer, L, Van Camp, L. 1994. Seasonal and interannual variability of coastal upwelling along northwest Africa and Portugal from 1981 to 1991. Journal of Geophysical Research 99(C7):14,197207.CrossRefGoogle Scholar
Pastor, MV, Pelegrí, JL, Hernández-Guerra, A, Fonta, J, Salata, J, Emelianova, M. 2008. Water and nutrient fluxes off northwest Africa. Continental Shelf Research 28(7):915–36.CrossRefGoogle Scholar
Pelegrí, JL, Marrero-Díaz, A, Ratsimandresy, AW. 2006. Nutrient irrigation of the North Atlantic. Progress in Oceanography 70(2–4):366406.Google Scholar
Pérez-Rodríguez, P, Pelegrí, JL, Marrero-Díaz, A. 2001. Dynamical characteristics of the Cape Verde frontal zone. Scientia Marina 65(S1):241–50.CrossRefGoogle Scholar
Reimer, RW, Reimer, PJ. 2006. Marine reservoir corrections and the calibration curve. PAGES News 14(3):12–3.CrossRefGoogle Scholar
Reimer, PJ, McCormac, G, Moore, J, McCormick, F, Murray, EV. 2002. Marine radiocarbon reservoir corrections for the mid- to late Holocene in the eastern subpolar North Atlantic. The Holocene 12(2):129–35.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Sigman, DM, Boyle, EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806):859–69.Google Scholar
Soares, AMM. 1989. O Efeito de Reservatório Oceânico nas Águas Costeiras de Portugal Continental. Sacavém: Instituto de Ciências e Engenharia Nucleares (Instituto Nacional de Engenharia e Tecnologia Industrial). 135 p. In Portuguese.Google Scholar
Soares, AMM. 1993. The 14C content of marine shells: evidence for variability in coastal upwelling off Portugal during the Holocene. In: Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. Vienna: International Atomic Energy Agency (IAEA). p 471–85.Google Scholar
Soares, AMM. 2005. Variabilidade do “Upwelling” Costeiro durante o Holocénico nas Margens Atlânticas Ocidental e Meridional da Península Ibérica [PhD dissertation]. Faro: Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve. In Portuguese.Google Scholar
Soares, AMM. 2010. Comment on “Formation of chenier plain of the Doñana marshland (SW Spain): observations and geomorphic model” by A. Rodríguez-Ramírez and C.M. Yáñez-Camacho [Marine Geology 254 (2008) 187–196]. Marine Geology 275(1–4):287–9.Google Scholar
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon—evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.Google Scholar
Soares, AMM, Dias, JMA. 2007. Reservoir effect of coastal waters off western and northwestern Galicia. Radiocarbon 49(2):925–36.CrossRefGoogle Scholar
Soares, AMM, Martins, JMM. 2009. Radiocarbon dating of marine shell samples. The marine radiocarbon reservoir effect of coastal waters off Atlantic Iberia during Late Neolithic and Chalcolithic periods. Journal of Archaeological Science 36(12):2875–81.Google Scholar
Soares, AMM, Martins, JMM. 2010. Radiocarbon dating of marine samples from Gulf of Cadiz: the reservoir effect. Quaternary International 221(1–2):912.Google Scholar
Soares, AMM, Mederos Martín, A, Martins, JMM. 2009. Radiocarbon dating of marine shell samples. The marine reservoir effect in Canary Islands coastal waters. Libro de Resúmes, VIII Congreso Ibérico de Arqueometría (Teruel, 19–21 October 2009). p 72.Google Scholar
Spall, MA. 1992. Rossby wave radiation in the Cape Verde frontal zone. Journal of Physical Oceanography 22(7):796807.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Vangriesheim, A, Bournot-Marec, C, Fontan, AC. 2003. Flow variability near the Cape Verde frontal zone (subtropical Atlantic Ocean). Oceanologica Acta 26(2):149–59.Google Scholar
Wooster, WS, Bakun, A, McLain, DR. 1976. The seasonal upwelling cycle along the eastern boundary of the North Atlantic. Journal of Marine Research 34(2):131–41.Google Scholar
Zenk, W, Klein, B, Schroder, M. 1991. Cape Verde frontal zone. Deep-Sea Research 38(S1):505–30.CrossRefGoogle Scholar