Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T04:44:38.716Z Has data issue: false hasContentIssue false

Reconstruction of Microenvironmental Changes in the Kopasz Hill Loess Area at Tokaj (Hungary) Between 15 and 70 ka BP

Published online by Cambridge University Press:  18 July 2016

Pál Sümegi
Affiliation:
Department of Mineralogy and Geology, L. Kossuth University, 4010 Debrecen, P.O.B. 4, Hungary
Ede Hertelendi
Affiliation:
Department of Mineralogy and Geology, L. Kossuth University, 4010 Debrecen, P.O.B. 4, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We collected 11 Kopasz Hill loess profiles for paleoecological and geochronological analysis. The loess accumulation and development formed during the last (Weichselian) glacial period between 70 and 15 ka bp. We found that the majority of the loess profiles were composed of three typical loess strata and two well-developed paleosol horizons. Based on vertebrate remains, the lowest loess layer formed between 70–50 ka bp, during the first cool and dry climatic phase of the last glacial period, when forest steppe vegetation dominated in the Kopasz Hill area. On the surface of the lowermost layer, a paleosol developed between 50 and 40 ka bp as an indication of a more humid and warmer climatic phase. This paleosol layer was buried by a new loess layer that developed between 40 and 32 ka bp. The upper paleosol horizon developed between 32 and 26 ka bp. Molluscs preferring a mild climate were found in this layer, suggesting that this phase was wet and relatively temperate. A number of fired macrocharcoal remains can be found on the top of this paleosol layer. Charcoal samples from nine sites were dated by radiocarbon analyses. These results reflect the presence of a charcoal-rich horizon that developed 28–26 ka bp. Ca. 26 ka bp, loess formation resumed. We analyzed 14 samples from 6 sites by the 14C method. Based on 14C data, the uppermost part of loess profiles developed between 26 and 15 ka bp.

Type
Part 2: Applications
Copyright
Copyright © The American Journal of Science 

References

Aaby, B. 1986 Palaeoecological studies of mires. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. New York, John Wiley & Sons: 111126.Google Scholar
Bennett, K. D., Tzedakis, P. C. and Willis, K. J. 1991 Quaternary refugia of Northern European trees. Journal of Biogeography 18: 103115.CrossRefGoogle Scholar
Boros, L. (ms.) 1977 Erosion of the loess blanket of Nagy Hill at Tokaj. Ph.D. dissertation. Debrecen, Hungary (in Hungarian).Google Scholar
Bonan, G. B. 1992 Soil temperature as an ecological factor in boreal forests. In Shugart, H. H., Leemans, R. and Bonan, G. B., eds., A Systems Analysis of the Global Boreal Forest. London, Cambridge University Press: 126144.CrossRefGoogle Scholar
Burleigh, R. and Kerney, M. P. 1982 Some chronological implications of a fossil molluscan assemblage from a Neolithic site at Brook, Kent, England. Journal of Archeological Science 9: 2938.CrossRefGoogle Scholar
Denton, G. H. and Hughes, T. J. 1981 The Last Great Ice Sheets. New York, John Wiley & Sons: 488 p.Google Scholar
Goodfriend, G. A. 1987 Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29(2): 159167.CrossRefGoogle Scholar
Goodfriend, G. A. and Stipp, J. J. 1983 Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11: 575577.2.0.CO;2>CrossRefGoogle Scholar
Guiot, J., Poas, A., de Beaulieu, J. L. and Reille, M. 1989 A 140,000-year continental climate reconstruction from two European pollen record. Nature 338: 309313.CrossRefGoogle Scholar
Gyarmati, P. 1977 The Tokaj Mountains. Budapest, MÁFI Évkönyve: 136 p. (in Hungarian).Google Scholar
Hertelendi, E., Csongor, É., Záborszky, L., Molnár, J., Gál, J., Györffy, M. and Nagy, S. 1989 A counter system for high-precision 14C dating. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 399406.CrossRefGoogle Scholar
Hertelendi, E., Sümegi, P. and Szöor, Gy. 1992 Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 833839.CrossRefGoogle Scholar
Justyák, J. 1964 Fieldclimate measurings on the southern slope of the Kopasz hill at Tokaj. Acta Geographica, Geologica et Meteorologica Debrecina 10: 2738 (in Hungarian).Google Scholar
Kerney, M. P., Cameron, R. A. D. and Jungbluth, J. H. 1983 Die Landschnecken Nord-und Mitteleuropas. Hamburg, Parey: 384 p.Google Scholar
Kordos, L. and Ringer, Á. 1991 Climatostratigraphic and archeostratigraphic correlation of Arvicolidae stratigraphy of the Late Pleistocene in Hungary. MÁFI Évi Jelentése 1989 évről: 523533.Google Scholar
Kozák, M. and Rózsa, P. 1982 The geological evolution history and morphological outlines of Tokaj-Nagy-hegy. Acta Geographica Debrecina 20: 167190 (in Hungarian with English summary).Google Scholar
Krolopp, E. and Sümegi, P. 1990 Vorkommen von Vestia turgida (Rossmässler 1836) in den pleistozänen Sedimenten Ungarns. Soosiana 18: 510.Google Scholar
Krolopp, E. and Sümegi, P. 1991 Dominancia level of the species Punctum pygmaeum (Draparnaud, 1801): A biostratigraphical and paleoecological key level for the Hungarian loess sediments of the Upper Würm. Soosiana 19: 1723.Google Scholar
Krolopp, E. and Sümegi, P. 1995 Palaeoecological reconstruction of the Late Pleistocene, based on Loess Malacofauna in Hungary. GeoJournal 36: 213222.CrossRefGoogle Scholar
Kukla, G. J., Heller, F., Liu, X. M., Yu, T. C., Liu, T. S. and An, Z. S. 1988 Pleistocene climates in China dated by magnetic susceptibility. Geology 16: 811814.2.3.CO;2>CrossRefGoogle Scholar
Ložek, V. 1964 Quartärmollusken der Tschechoslowakei. Rozpravy Ústredniho Ústavu Geologického 31: 374.Google Scholar
Meier, T. 1985 The pre Weichselian nonmarine molluscan fauna from Maastricht-Belvedére (Southern Limburg, the Netherlands). Mededelingen Rijks Geologische Dienst 39: 75103.Google Scholar
Molnár, B. and Geiger, J. 1995 Possibility for subdividing apparently homogeneous depositional sequences by combined use of sedimentological, palaeontological and mathematical method. GeoJournal 36: 169177.CrossRefGoogle Scholar
Pécsi, M. 1993 Quaternary and Loess Research. Budapest, Akadémiai: 375 p. (in Hungarian with English summary).Google Scholar
Pécsi, M., Szebényi, E. and Pevzner, M. A. 1979 Upper Pleistocene Litho- and Chrono-stratigraphical type profile from the exposure at Mende. Acta Geologica Hungarica 22: 371389.Google Scholar
Pinczés, Z. 1954 The loess blanket of Nagy-hegy at Tokaj. Földrajzi Értesítő 3: 575584 (in Hungarian).Google Scholar
Pinczés, Z. 1987 Guide Book of Excursions. Debrecen, Carpatho-Balcan Geomorphological Commission: 64 p.Google Scholar
Preece, R. C. 1980 The biostratigraphy and dating of the tufa deposit at the Mesolithic site at Blashenwell, Dorset, England. Journal of Archeological Science 7: 345362.CrossRefGoogle Scholar
Preece, R. C. 1991 Accelerator and radiometric radiocarbon dates on a range of materials from colluvial deposits at Holywell Coombe, Folkstone. In Lowe, J. J., ed., Radiocarbon Dating: Recent Applications and Future Potential. Quaternary Proceedings 1: 4553.Google Scholar
Preece, R. C. and Day, S. P. 1994 Comparison of Postglacial molluscan and vegetational succession from a radiocarbon dated tufa sequence in Oxfordshire. Journal of Biogeography 21: 463478.CrossRefGoogle Scholar
Ran, E. T. H. 1990 Dynamics of vegetation and environment during the Middle Pleniglacial in the Dinkley Valley (the Netherlands). Mededelingen Rijks Geologische Dienst 44: 141208.Google Scholar
Rousseau, D. D. 1991 Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research 36: 195209.CrossRefGoogle Scholar
Rubin, M., Likins, R. S. and Berry, E. G. 1963 On the validity of radiocarbon dates from snail shells. Journal of Geology 71: 8489.CrossRefGoogle Scholar
Rubin, M. and Taylor, D. W. 1963 Radiocarbon activity of shells from living clams and snails. Science 141: 637.CrossRefGoogle ScholarPubMed
Rudner, E. (ms.) 1995 Reconstruction of the Upper Pleistocene vegetation of Hungary based on wood anatomy. M.S. dissertation, Debrecen: 57 p. (in Hungarian).Google Scholar
Sparks, B. W. 1961 The ecological interpretation of Quaternary non-marine Mollusca. Proceedings of the Linnean Society of London 172: 7180.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. 1993 Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 137189.CrossRefGoogle Scholar
Sümegi, P. (ms.) 1996 Comparative paleoecological and stratigraphical valuation of the NE Hungarian loess-areas. Ph.D. thesis, Kossuth University, Debrecen: 120 p. (in Hungarian).Google Scholar
Sümegi, P. and Krolopp, E. 1995 Reconstruction of paleoecological condition during the deposition of Würm loess formation of Hungary based on malacological investigations. Földtani Közlöny 124: 125148 (in Hungarian with English abstract).Google Scholar
van der Hammen, T. and Wijmstra, T. A., eds., 1971 The Upper Quaternary of the Dinkley valley (Twente, Eastern Overijssel, The Netherlands). Mededelingen Rijks Geologische Dienst 22: 55214.Google Scholar
Willis, K. J. 1994 The vegetation history of the Balkans. Quaternary Sciences Reviews 13: 769788.CrossRefGoogle Scholar
Willis, K. J. 1996 Where did all the flowers go? The fate of temperate European flora during glacial periods. Endeavour 20: 110114.CrossRefGoogle Scholar
Willis, K. J., Sümegi, P., Braun, M. and Tóth, A. 1995 The Late Quaternary Environmental History of Bátorliget, N.E. Hungary. Palaeoclimatology, Palaeoecology, Palaeogeography 118: 2547.CrossRefGoogle Scholar
Willis, K. J., Sümegi, P., Braun, M. and Tóth, A. 1997 Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78: 740750.CrossRefGoogle Scholar
Yates, T. J. S. 1988 The detection of diagenetic change in non-marine shells prior to their submission for 14C dating. In Olsen, S. L., ed., Scanning Electron Microscopy in Archaeology. BAR International Series 452. Oxford, British Archaeological Reports: 239248.Google Scholar
Zagwijn, W. H. 1961 Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands. Part I: Eemian and Early Weichselian. Mededelingen Rijks Geologische Dienst 14: 1545.Google Scholar
Zagwijn, W. H. 1974 Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands. Part II: Middle Weichselian. Mededelingen Rijks Geologische Dienst 25:101111.Google Scholar
Zhong, W. Q., Yang, W. H., Diago, G. Y., Sun, F. Q., Yu, S. H. and Liu, Y. M. 1984 The evolution of chemical elements in loess of China and paleoclimatic conditions during loess deposition. In Pécsi, M., ed., Lithology and Stratigraphy of Loess and Paleosols. Budapest, Geography Research Institute, Hungarian Academy of Sciences: 161170.Google Scholar