An isotopic database for the Pacific/Polynesian rat (Rattus exulans) and foods that it scavenges is used to examine diet-induced 14C age variation in omnivores. We discuss a suite of 26 δ14C determinations and 13C and 15N analysis for modern Pacific/Polynesian rat bone gelatin and available food items from Kapiti Island, New Zealand (40°51'S, 174°75'E). These analyses provide the first isotopic data for modern specimens of the species, collected as part of a larger project to determine potential sources of bias in unexpectedly old 14C age measurements on subfossil specimens of R. exulans from New Zealand. Stable C, N and 14C isotopic and trapping data are used to trace carbon intake via the diet of the rats in each habitat. Data from specimens linked to five specific habitats on the island indicate that modern populations of R. exulans are not in equilibrium with atmospheric values of δ14C, being either enriched or depleted relative to the atmospheric curve in 1996/97, the period of collection. The δ14C values recorded for R. exulans are associated with diet, and result from variation in δ14C values found in animal-protein food items available to a scavenging omnivore. The titer of carbon deviating from atmospheric values is believed to be derived from the essential amino acids in the protein-rich foods of the rat diet.
Present evidence suggests that the depletion required to affect 14C ages limits the possibility that diet introduces dramatic offsets from true ages. Marine diets, for example, would have a variable effect on ages for terrestrial omnivores, contraindicating the application of a standard marine correction for such specimens. We suggest that to identify the extent to which diet may influence the 14C age in a given specimen of terrestrial omnivore, the separation and dating of essential amino acids vs. a nonessential amino, such as glycine, be applied.