Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T19:57:27.238Z Has data issue: false hasContentIssue false

Mesoscale dispersion of 85Kr in the vicinity of the AREVA La Hague reprocessing plant

Published online by Cambridge University Press:  09 January 2012

O. Connan*
Affiliation:
IRSN/DEI/SECRE, Laboratoire de Radioécologie, Cherbourg-Octeville, France
K. Smith
Affiliation:
RPII, Radiological Protection Institute of Ireland, Clonskeagh, Dublin 14, Ireland
L. Solier
Affiliation:
IRSN/DEI/SECRE, Laboratoire de Radioécologie, Cherbourg-Octeville, France
D. Maro
Affiliation:
IRSN/DEI/SECRE, Laboratoire de Radioécologie, Cherbourg-Octeville, France
D. Hébert
Affiliation:
IRSN/DEI/SECRE, Laboratoire de Radioécologie, Cherbourg-Octeville, France
G. Bacon
Affiliation:
IRSN/DEI/SECRE, Laboratoire de Radioécologie, Cherbourg-Octeville, France
Get access

Abstract

The Institut de Radioprotection et de Sureté Nucléaire (IRSN) performed a series of air sampling campaigns at mesoscale distances (10–80 km) from the AREVA La Hague reprocessing plant (north west of France) between 2007 and 2009. These samples were collected in order to test and optimise a technique to measure low krypton-85 (85Kr) air concentrations, and to investigate the performance of three atmospheric dispersion models (RIMPUFF, HySplit, and ADMS). This paper presents 85Kr air concentrations measured at both land and sea locations. In addition, this paper compares the measured 85Kr air concentrations, which varied from 2 to 8000 Bq m−3, with the predictions from the atmospheric dispersion models. During stable wind conditions, the dispersion models make reasonable estimates of the 85Kr field measurements. In contrast, the models fail to accurately predict temporal peaks in concentration during periods of rapid and large changes in wind speed and/or wind direction.

Type
Research Article
Copyright
© Owned by the authors, published by EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kok Y.S., Eleveld H., Schnadt H., Gering F., Gregor, J., Böttge H. and Salfeld C., Radiat Prot Dosim 113 (2005) 381-391.
Harrison R.M., ApSimon H.M., Beck H., Dickerson D., Garland J.A., Graziani G., Gudiksen P., McKay W.A., Mishra U.C., Nicholson K.W., Smith F.B. and Shapiro, C.S., 1993. “Atmospheric Pathways”, SCOPE 50 Radioecology after Chernobyl, F. Warner & R.M. Harrison Eds. (John Wiley & Sons, Chichester, 2003) 55-100.
Cooper J.R., Randle K. and Sokhi R.S., 2003. Radioactive Releases in the Environment: Impact and Assessment (John Wiley & Sons, Chichester, 2003).
Ahlswede J., Hebel S. and Kalinowski M.B., Ross O., Update of the global Krypton-85 emission inventory: Occasional paper N9 (University of Hamburg, Hamburg, 2009).
Gurriaran R., Maro D., Bouisset P., Hebert D., Leclerc G., Mekhlouche M., Rozet M. and Solier L., J Environ Radioactiv 72 (2004) 137-144.
Draxler R.R. and Hess G.D., Description of the HySplit 4 modelling system. (NOAA Technical Memorandum ERL ARL-224, Maryland, 2004)
CERC, 2009. ADMS 4.0 User Guide, Cambridge Environmental Research Consultants, (2009).
Thykier-Nielsen S., Mikkelsen T. and Moreno J., Radiat Prot Dosim 50 (1993) 249-255.