Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T21:44:27.825Z Has data issue: false hasContentIssue false

Une procédure de purificationpour les problèmes de complémentarité linéaire, monotones

Published online by Cambridge University Press:  15 April 2004

Abderrahim Kadiri
Affiliation:
LMAH, Université du Havre, BP 540, 76058 Le Havre, France ; adnan.yassine@univ-lehavre.fr.
Adnan Yassine
Affiliation:
LMAH, Université du Havre, BP 540, 76058 Le Havre, France ; adnan.yassine@univ-lehavre.fr.
Get access

Abstract

Dans cet article, nous proposons une nouvelle méthode de purification pour les problèmes de complémentarité linéaire, monotones. Cette méthode associe à chaque itéré de la suite, générée par une méthode de points intérieurs, une base non nécessairement réalisable. Nous montrons que, sous les hypothèses de complémentarité stricte et de non dégénérescence, la suite des bases converge en un nombre fini d'itérations vers une base optimale qui donne une solution exacte du problème. Le procédé adopté sert également à préconditionner l'algorithme de gradient conjugué lors du calcul de la direction de Newton.

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.F. Bonnans, J.C. Gilbert, C. Lemarechal and C. Sagastizabal, Optimisation Numérique. Aspects théoriques et pratiques. Springer-Verlag (1997).
Bonnans, J.F. and Gonzaga, C.C., Convergence of interior point algorithms for the monotone linear complementarity problem. Math. Oper. Res. 21 (1996) 1-25. CrossRef
R.W. Cottle, J.S. Pang and V. Venkateswaran, Sufficient matrices and the linear complementarity problem. Linear Algebra Appl. 114/115 (1989) 231-249.
Facchinei, F., Fischer, A. and Kanzow, C., On the identification of zero variables in a interior-point framework. SIAM J. Optim. 10 (2000) 1058-1078. CrossRef
Gonzaga, C.C., Path-following methods for linear programming. SIAM Rev. 34 (1992) 167-224. CrossRef
Illes, T., Peng, J., Roos, C. and Terlaky, T., A strongly polynomial rounding procedure yielding a maximally complementary solution for P*(k) linear complementarity problems. SIAM J. Optim. 11 (2000) 320-340. CrossRef
J. Ji and A. Potra, Tapia indicators and finite termination of infeasible-interior-point methods for degenerate LCP, edited by J. Renegar, M. Shub and S. Smale. AMS, Providence, RI. Math. Numer. Anal., Lect. Appl. Math. 32 (1996) 443-454.
Ji, J., Potra, A. and S.Huang, Predictor-corrector method for linear complementarity problems with polynomial complexity and superlinear convergence. JOTA 85 (1995) 187-199. CrossRef
A. Kadiri, Analyse numérique des méthodes de points intérieurs pour les problèmes de complémentarité linéaire et la programmation quadratique convexe. Thèse de Doctorat, INSA de Rouen (2001).
C.T. Kelley, Iterative methods for linear and nonlinear equations. Frontiers Appl. Math. 16 (1995).
Kojima, M., Mizuno, S. and Yoshise, A., A polynomial-time algorithm for a class of linear complementarity problems. Math. Program. 44 (1989) 1-26. CrossRef
Kojima, M., Kurita, Y. and Mizuno, S., Large-step interior point algorithmsfor linear complementarity problems. SIAM J. Optim. 3 (1993) 398-412. CrossRef
Kortanek, K. and Zhu, J., New purification algorithms for linear programming. Naval Res. Logist 35 (1988) 571-583. 3.0.CO;2-L>CrossRef
Mcshane, K., Superlineary convergent $O(\sqrt{n}L)$ -iteration interior-point algorithms for LP and the monotone LCP. SIAM J. Optim. 4 (1994) 247-261. CrossRef
Monteiro, R. and Adler, I., Interior path-following primal-dual algorithms, part II: Convex quadratic programming. Math. Program. 44 (1989) 43-66. CrossRef
Monteiro, R. and Wright, S., Local convergence of interior-point algorithms for degenerate monotone LCP. Comput. Optim. Appl. 3 (1994) 131-155. CrossRef
C.R. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall. Englewood Cliffs, New Jersey (1982).
F.A. Potra and R. Sheng, A superlineary convergent infeasible-interior-point algorithm for degenerate LCP. J. Optim. Theory Appl. 97 (1998) 249-269.
On, Y. Ye the finite convergence of interior point algorithms for linear programming. Math. Program. 57 (1992) 325-335.
Y. Ye, Interior Point Algorithms: Theory and Analysis. John Wiley, New York (1997).
Ye, Y. and Anstreicher, K.M., On quadratic and $O(\sqrt{n}L)$ convergence of a predictor-corrector algorithm for LCP. Math. Program. 62 (1993) 537-551. CrossRef