No CrossRef data available.
Article contents
Subharmonic solutions of a nonconvex noncoercive Hamiltonian system
Published online by Cambridge University Press: 15 April 2004
Abstract
In this paper we study the existence of subharmonic solutions of the Hamiltonian system $$ J\dot x+ u^* \nabla G(t,u(x)) =e(t)$$ where u is a linear map, G is a C 1-function and e is a continuous function.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2004
References
Conley, C. and Zehnder, E., Subharmonic solutions and Morse theory.
Phys. A
124 (1984) 649-658.
CrossRef
Ekeland, I. and Hofer, H., Subharmonics for convex nonautonomous Hamiltonian systems.
Commun. Pure Appl. Math.
40 (1987) 1-36.
CrossRef
Fonda, A. and Lazer, A.C., Subharmonic solutions of conservative systems with nonconvex potentials.
Proc. Am. Math. Soc.
115 (1992) 183-190.
CrossRef
F. Fonda and M. Willem, Subharmonic oscllations of forced pendulum-type equation J. Differ. Equations
81 (1989) 215-220.
Fournier, G., Timoumi, M. and Willem, M., The limiting case for strongly indefinite functionals.
Topol. Meth. Nonlinear Anal.
1 (1993) 203-209.
CrossRef
Giannoni, F., Periodic Solutions of Dynamical Systems by a Saddle Point Theorem of Rabinowitz.
Nonlinear Anal.
13 (1989) 707-7019.
CrossRef
Rabinowitz, P.H., Subharmonic Solutions, On of Hamiltonian Systems.
Commun. Pure Appl. Math.
33 (1980) 609-633.
CrossRef
Timoumi, M., Subharmonics of convex noncoercive Hamiltonian systems.
Coll. Math.
43 (1992) 63-69.
Willem, M., Subharmonic oscillations of convex Hamiltonian systems.
Nonlinear Anal.
9 (1985) 1311.