In this study, we consider a scheduling environment with m(m ≥ 1) parallel machines.The set of jobs to schedule is divided into K disjoint subsets. Each subset of jobs isassociated with one agent. The K agents compete to perform their jobs on commonresources. The objective is to find a schedule that minimizes a global objective functionf 0, while maintaining the regularobjective function of each agent, f k, at a level nogreater than a fixed value, εk (fk ∈ {fkmax, ∑fk}, k = 0, ..., K). This problem is a multi-agent schedulingproblem with a global objective function. In this study, we consider the casewith preemption and the case without preemption. If preemption is allowed, we propose apolynomial time algorithm based on a network flow approach for the unrelated parallelmachine case. If preemption is not allowed, we propose some general complexity results anddevelop dynamic programming algorithms.