No CrossRef data available.
Article contents
Codes générateurs minimaux de langages de mots bi-infinis
Published online by Cambridge University Press: 15 April 2002
Abstract
In this paper we give two families of codes which are minimal generators of biinfinite languages: the family of very thin codes (which contains the rational codes) and another family containing the circular codes. We propose the conjecture that all codes are minimal generators.
Keywords
- Type
- Research Article
- Information
- RAIRO - Theoretical Informatics and Applications , Volume 34 , Issue 6 , November 2000 , pp. 585 - 596
- Copyright
- © EDP Sciences, 2000
References
J. Berstel et D. Perrin, Theory of codes. Academic Press, Orlando (1985).
D. Beauquier, Automates sur les mots bi-infinis. Thesis, University of Paris VII, France (1986).
V. Bruyère, Codes, Chapter 7, Algebraic Combinatorics on words, edited by M. Lothaire (to appear).
J. Devolder, Comportement des codes vis-à-vis des mots infinis et bi-infinis. Théorie des Automates et Applications, edited by D. Krob. Rouen, France (1991) 75-90.
Devolder, J. et Litovsky, I., Finitely generated bi
$\omega$
-langages.
Theoret. Comput. Sci.
85 (1991) 33-52.
CrossRef
Devolder, J. et Timmerman, E., Finitary codes for biinfinite words.
RAIRO: Theoret. Informatics Appl.
26 (1992) 363-386.
Devolder, J., Precircular codes and periodic bi-infinite words.
Inform. and Comput.
107 (1993) 185-201.
CrossRef
J. Devolder, Codes, mots infinis et bi-infinis. Ph.D. Thesis, University of Lille I, France (1993).
Devolder, J., Latteux, M., Litovsky, I. et Staiger, L., Codes and infinite words.
Acta Cybernet.
11 (1994) 241-256.
Gire, F. et Nivat, M., Langages algébriques de mots bi-infinis.
Theoret. Comput. Sci.
86 (1991) 277-323.
CrossRef
Lassez, J.-L., Circular codes and synchronisation.
Internat. J. Comput. Inform. Sci.
5 (1976) 201-208.
CrossRef
Litovsky, I., Prefix-free languages as
$\omega$
-generators.
Inform. Process. Lett.
37 (1991) 61-65.
CrossRef
M. Nivat et D. Perrin, Ensembles reconnaissables de mots bi-infinis, in Proc. 14e ACM Symp. on Theory of Computing, Vol. 005 (1982) 47-59.