Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T08:05:47.926Z Has data issue: false hasContentIssue false

Using reference values to assess environmental sustainability of dairy farms

Published online by Cambridge University Press:  19 August 2011

I. Acosta-Alba
Affiliation:
INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France. Agrocampus Ouest, F-35000 Rennes, France.
M.S. Corson*
Affiliation:
INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France. Agrocampus Ouest, F-35000 Rennes, France.
H.M.G. van der Werf
Affiliation:
INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France. Agrocampus Ouest, F-35000 Rennes, France.
P. Leterme
Affiliation:
INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France. Agrocampus Ouest, F-35000 Rennes, France.
*
*Corresponding author: michael.corson@rennes.inra.fr

Abstract

One challenge for the environmental assessment of agricultural systems is to progress from estimating whether one farming system has fewer impacts than another to estimating whether or not it can be considered environmentally sustainable. To this end, we developed reference values (RVs) of farm emissions or energy use per hectare that defined hypothetical sustainability thresholds in each of three impact categories: climate change, water-quality degradation and non-renewable energy use. We applied one RV per category to the potential impacts (estimated by life-cycle assessment) of 45 French dairy farms to identify farms below RVs in each impact category and then evaluated their management and production characteristics. Seventeen of the 45 farms lie below at least one of the three RVs. Groups of farms below RVs had a higher percentage of organic farms, larger mean usable agricultural area, longer mean pasture residence time and lower mean inputs of concentrate feed and nitrogen than those above the same RVs. In consequence, the groups below RVs also tended to have lower mean milk production per cow and per hectare. All milk production systems can move toward environmental sustainability even though, according to production mode and intensity, some potential impacts are easier to reduce than others. Most farms were unable to attain the lowest RVs, suggesting that policy-makers may need to consider less ambitious RVs for existing agricultural systems. Otherwise, the distance between normative RVs and indicator values of dairy farms suggest that production and consumption of agricultural products will need to change if sustainability goals do not.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bosshard, A. 2000. A methodology and terminology of sustainability assessment and its perspectives for rural planning. Agriculture, Ecosystems and Environment 77(1–2):2941.CrossRefGoogle Scholar
2Fricker, A. 1998. Measuring up to sustainability. Futures 30(4):367375.CrossRefGoogle Scholar
3Mebratu, D. 1998. Sustainability and sustainable development: Historical and conceptual review. Environmental Impact Assessment Review 18(6):493520.CrossRefGoogle Scholar
4WCED. 1987. Our common future. General Assembly, World Commission on Environment and Development, United Nations, Nairobi, Kenya.Google Scholar
5FAO. 2007. Agriculture key player to stop degradation of vital ecosystems. Food and Agriculture Organization of United Nations. FAO Newsroom March 18, 2008. Rome, Italy.Google Scholar
6van der Werf, H.M.G. and Petit, J. 2002. Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agriculture Ecosystems and Environment 93(1–3):131145.CrossRefGoogle Scholar
7Jolliet, O., Saadé, M., and Crettaz, P. 2005. Analyse du Cycle de Vie. Comprendre et Réaliser un Ecobilan. Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland.Google Scholar
8Payraudeau, S. and van der Werf, H.M.G. 2005. Environmental impact assessment for a farming region: A review of methods. Agriculture, Ecosystems and Environment 107(1):119.CrossRefGoogle Scholar
9Goeminne, G. and Paredis, E. 2009. The concept of ecological debt: Some steps towards an enriched sustainability paradigm. Environment, Development and Sustainability 12(5):691712.CrossRefGoogle Scholar
10Groffman, P., Baron, J., Blett, T., Gold, A., Goodman, I., Gunderson, L., Levinson, B., Palmer, M., Paerl, H., Peterson, G., Poff, N., Rejeski, D., Reynolds, J., Turner, M., Weathers, K., and Wiens, J. 2006. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 9(1):113.CrossRefGoogle Scholar
11Bastian, O., Corti, C., and Lebboroni, M. 2007. Determining environmental minimum requirements for functions provided by agro-ecosystems. Agronomy for Sustainable Development 27(4):279291.CrossRefGoogle Scholar
12Brink, P.T., Miller, C., Kettunen, M., Ramsak, K., Farmer, A., Hjerp, P., and Anderson, J. 2008. Critical thresholds, evaluation and regional development. European Environment 18(2):8195.CrossRefGoogle Scholar
13Acosta-Alba, I. and van der Werf, H. 2011. The use of reference values in indicator-based methods for the environmental assessment of agricultural systems. Sustainability 3(2):424442.CrossRefGoogle Scholar
14van der Werf, H.M.G., Kanyarushoki, C., and Corson, M.S. 2009. An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. Journal of Environmental Management 90(11):36433652.CrossRefGoogle ScholarPubMed
15ISO. 2006. ISO 14040: Environmental Management-Life Cycle Assessment-Requirements and Guidelines. International Organization for Standardization, Bruxelles, Belgium.Google Scholar
16Finnveden, G. and Nilsson, M. 2005. Site-dependent life-cycle impact assessment in Sweden. International Journal of Life Cycle Assessment 10:235239.CrossRefGoogle Scholar
17Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., Koning, A., de Oers, L.V., Wegener, Sleeswijk A., Suh, S., Udo de Haes, H.A., Bruijn, H.D., Duin, R.V., and Huijbregts, M.A.J. 2002. Handbook on Life Cycle Assessment Operational Guide to the ISO standards. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
18BUWAL. 1996. Ökoinventare für Verpackungen. Schriftenreihe Umwelt Nr. 250/1+2, Bundesamt für Umwelt, Wald und Landschaft, Bern, Switzerland.Google Scholar
19Gaillard, G., Crettaz, P., and Hausheer, J. 1997. Inventaire Environnemental des Intrants Agricoles en Production Végétale. Base de Données pour l'Etablissement des Bilans Energétiques et Ecologiques en Agriculture. Station Fédérale de Recherche en Economique et Technologies Agricoles, Tänikon, Switzerland.Google Scholar
20Patyk, A. and Reinhardt, G. 1997. Düngemittel- Energie- und Stoffstrombilanzen. Vieweg und Sohn, Braunschweig. Wiesbaden, Germany.CrossRefGoogle Scholar
21Davis, J. and Haglund, C. 1999. Life cycle inventory of fertiliser production. Fertiliser products used in Sweden and Western Europe. SIK Report No. 654. SIK. Göteborg, Sweden.Google Scholar
22Haas, G., Wetterich, F., and Geier, U. 2000. Life cycle assessment framework in agriculture on the farm level. International Journal of Life Cycle Assessment 5(6):345348.CrossRefGoogle Scholar
23De Groot, R.S., Wilson, M.A., and Boumans, R.M.J. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41(3):393408.CrossRefGoogle Scholar
24IPCC. 2007. Fourth Assessment Report: Climate Change 2007 Synthesis Report. IPCC, Geneva, Switzerland, p. 104.Google Scholar
25IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Hayama, Japan. Available at Web site: http://www.ipcc-nggip.iges.or.jp (accessed July 18, 2011).Google Scholar
26Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., RagaG., M. S. G., M. S., and Van Dorland, R. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
27Payraudeau, S., van der Werf, H.M.G., and Vertès, F. 2006. Evaluation of an operational method for the estimation of emissions of nitrogen compounds for a group of farms. International Journal of Agricultural Resources Governance and Ecology 5(2–3):224246.CrossRefGoogle Scholar
28Payraudeau, S., van der Werf, H.M.G., and Vertès, F. 2007. Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems. Agricultural Systems 94(2):416430.CrossRefGoogle Scholar
29Basset-Mens, C., Small, B., Paragahawewa, U.H., Lagevin, B., and Blackett, P. 2009. Life cycle thinking and sustainable food production. International Journal of Product Lifecycle Management 4(1–3):252269.CrossRefGoogle Scholar
30Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M.B., and Gaillard, G. 2009. Comparison of methods to assess the sustainability of agricultural systems: A review. Agronomy for Sustainable Development 29(1):223235.CrossRefGoogle Scholar
31von Wiren-Lehr, S. 2001. Sustainability in agriculture—an evaluation of principal goal-oriented concepts to close the gap between theory and practice. Agriculture, Ecosystems and Environment 84(2):115129.CrossRefGoogle Scholar
32Smyth, A.J. and Dumanski, J. 1993. FESLM: An International Framework for Evaluating Sustainable Land Management. Food and Agriculture Organization of the United Nations, March 4, 2008.Google Scholar
33Frischknecht, R., Steiner, R., Braunschweig, A., Egli, N., and Hildesheimer, G. 2008. Swiss Ecological Scarcity Method: The New Version 2006. Methode der ökologischen Knappheit – Ökofaktoren 2006. ÖBU Schweizerische Vereinigung für ökologisch bewusste Unternehmungsführung, Zürich und Bern [serial on the Internet]. 28. Available at Web site: http://www.esu-services.ch/ubp06/ (accessed July 18, 2011).Google Scholar
34Ekins, P. and Simon, S. 2001. Estimating sustainability gaps: methods and preliminary applications for the UK and the Netherlands. Ecological Economics 37(1):5–22.CrossRefGoogle Scholar
35van Cauwenbergh, N., Biala, K., Bielders, C., Brouckaert, V., Franchois, L., Garcia Cidad, V., Hermy, M., Mathijs, E., Muys, B., Reijnders, J., Sauvenier, X., Valckx, J., Vanclooster, M., Van der Veken, B., Wauters, E., and Peeters, A. 2007. SAFE – A hierarchical framework for assessing the sustainability of agricultural systems. Agriculture, Ecosystems and Environment 120(2–4):229242.CrossRefGoogle Scholar
36Ondersteijn, C.J.M., Harsh, G.W.J., Beldman, A.C.G., and Huirne, R. 2002. Management strategies on Dutch dairy farms to meet environmental regulations: A multi-case study. Netherlands Journal of Agricultural Science 50:4765.Google Scholar
37EESC. 2009. Opinion of the European Economic and Social Committee of 17 September 2009 on ‘Climate Change International Negotiations’. European Economic and Social Committee. Official Journal of European Union, Brussels, Belgium C77:19.Google Scholar
38WHO. 2007. Nitrate and Nitrite in Drinking-Water. Background Document for Development of Guidelines for Drinking-Water Quality. World Health Organization. WHO/SDE/WSH/07.01/16. Geneva, Switzerland. p. 21.Google Scholar
39Merot, P., Aurousseau, P., Gascuel-Odoux, C., and Durand, P. 2009. Innovative assessment tools to improve water quality and watershed management in farming areas. Integrated Environmental Assessment and Management 5(1):158166.CrossRefGoogle ScholarPubMed
40Ménesguen, A. 2003. Les Marées Vertes en Bretagne, la Responsabilité du Nitrate. IFREMER, June 2003. Plouzané, France.Google Scholar
41EC. 1975. Council Directive 75/440/EEC of 16 June 1975 concerning the Quality Required of Surface Water Intended for the Abstraction of Drinking Water in the Member States. Council of the European Communities, Brussels, Belgium.Google Scholar
42EC. 1991. Council Directive 91/676/EEC of 12 December 1991 concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. Council of the European Communities. Official Journal of the European Union, Brussels, Belgium, L375:31.Google Scholar
43Montreuil, O. and Merot, P. 2006. Nitrogen removal in valley bottom wetlands: assessment in headwater catchments distributed throughout a large basin. Journal of Environmental Quality 35(6):21132122.CrossRefGoogle ScholarPubMed
44Agrotransfert Bretagne. 2010. La Bretagne en couleur. Lame drainante estimée selon la pluviométrie moyenne de septembre à avril (1997–2009). Rennes-France. [September 15, 2010]; Available at Web site: http://agro-transfert-bretagne.univ-rennes1.fr/Territ_Eau/BOITE_A_OUTILS/Animations/cartes_regionales.asp (accessed July 18, 2011).Google Scholar
45EC. 2006. Communication from the Commission to the Council and the European Parliament. Renewable Energy Road Map. Renewable Energies in the 21st Century: Building a More Sustainable Future. Council of the European Communities. COM(2006) 848. Council of the European Communities, Brussels, Belgium.Google Scholar
46Souci, S., Scherz, H., Fachmann, W., Kraut, H., and Senser, F. 2000. Food Composition and Nutrition Tables. CRC Press, Bonn, Germany.Google Scholar
47Sauvant, D., Perez, J.-M., and Tran, G. 2004. Tables de Composition et de Valeur Nutritive des Matières Premières Destinées aux Animaux d'Elevage. 2nd ed., INRA-AFZ, Paris, France.Google Scholar
48OJFR. 2000. Appendix I: Tableau des coefficients spécifique de pollution pour l'estimation forfaitaire (In French). Ministry of Ecology Energy Sustainable Development and Town and Country Planning. Arrêté du 28/10/75. Official Journal of the French Republic, Paris, France. Available online at: http://www.ineris.fr/aida/?q=consult_doc/consultation/2.250.190.28.8.2579#Annexe_I (accessed July 18, 2011).Google Scholar
49Thomassen, M.A. and de Boer, I.J.M. 2005. Evaluation of indicators to assess the environmental impact of dairy production systems. Agriculture, Ecosystems and Environment 111(1–4):185199.CrossRefGoogle Scholar
50Chambaut, H., Le Gall, A., Pflimlin, A., and Ménard, J.L. 2003. Maîtrise des pollutions azotées en élevage bovin (in French). Rencontres Recherche Ruminants 10:403410.Google Scholar
51Casey, J.W. and Holden, N.M. 2005. The relationship between greenhouse gas emissions and the intensity of milk production in Ireland. Journal of Environmental Quality 34(2):429436.CrossRefGoogle ScholarPubMed
52Schröder, J.J., Scholefield, D., Cabral, F., and Hofman, G. 2004. The effects of nutrient losses from agriculture on ground and surface water quality: The position of science in developing indicators for regulation. Environmental Science and Policy 7(1):1523.CrossRefGoogle Scholar
53Lopez-Ridaura, S. 2005. Multi-Scale Sustainability Evaluation. A Framework for the Derivation and Quantification of Indicators for Natural Resource Management Systems. Wageningen University and Research Center, Wageningen, Netherlands.Google Scholar
54Chardon, X. 2008. Evaluation Environnementale des Exploitations Laitières par Modélisation Dynamique de Leur Fonctionnement et des Flux de Matière: Développement et Application du Simulateur Melodie. Institut des Sciences et Industries du Vivant et de l'Environnement (AgroParisTech), Paris, France.Google Scholar
55Beaujouan, V., Durand, P., Ruiz, L., Aurousseau, P., and Cotteret, G. 2002. A hydrological model dedicated to topography-based simulation of nitrogen transfer and transformation: rationale and application to the geomorphology–denitrification relationship. Hydrological Processes 16(2):493507.CrossRefGoogle Scholar
56Fischer, J., Manning, A.D., Steffen, W., Rose, D.B., Daniell, K., Felton, A., Garnett, S., Gilna, B., Heinsohn, R., Lindenmayer, D.B., MacDonald, B., Mills, F., Newell, B., Reid, J., Robin, L., Sherren, K., and Wade, A. 2007. Mind the sustainability gap. Trends in Ecology and Evolution 22(12):621624.CrossRefGoogle ScholarPubMed
57De Boissieu, C. 2006. Division par Quatre des Emissions de Gaz à Effet de Serre de la France à l'horizon 2050. La documentation Française, Paris, France.Google Scholar
58Anderson, K. and Bows, A. 2008. Reframing the climate change challenge in light of post-2000 emission trends. Philosophical Transactions of the Royal Society A 366(1882):38633882.CrossRefGoogle ScholarPubMed
59Peters, C.J., Wilkins, J.L., and Fick, G.W. 2007. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: The New York State example. Renewable Agriculture and Food Systems 22(02):145153.CrossRefGoogle Scholar
60Welch, R.M. and Graham, R.D. 1999. A new paradigm for world agriculture: meeting human needs: Productive, sustainable, nutritious. Field Crops Research 60(1–2):110.CrossRefGoogle Scholar
61Smil, V. 1999. Nitrogen in crop production: an account of global flows. Global Biogeochemical Cycles 13(2):647662.CrossRefGoogle Scholar
62Kratochvil, R., Kaltenecker, M., and Freyer, B. 2004. The ability of organic farming to nourish the Austrian people: an empirical study in the region Mostviertel–Eisenwurzen (A). Renewable Agriculture and Food Systems 19(01):4756.CrossRefGoogle Scholar