Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T12:35:49.380Z Has data issue: false hasContentIssue false

A VIEW OF THE NEURAL REPRESENTATION OF SECOND LANGUAGE SYNTAX THROUGH ARTIFICIAL LANGUAGE LEARNING UNDER IMPLICIT CONTEXTS OF EXPOSURE

Published online by Cambridge University Press:  20 May 2015

Kara Morgan-Short*
Affiliation:
University of Illinois at Chicago
ZhiZhou Deng
Affiliation:
The Chinese University of Hong Kong
Katherine A. Brill-Schuetz
Affiliation:
University of Illinois at Chicago
Mandy Faretta-Stutenberg
Affiliation:
Northern Illinois University
Patrick C. M. Wong
Affiliation:
The Chinese University of Hong Kong, Northwestern University
Francis C. K. Wong
Affiliation:
Nanyang Technological University
*
*Correspondence concerning this article should be addressed to Kara Morgan-Short, 601 S. Morgan St., 1706 University Hall M/C 315, Chicago, IL 60607. E-mail: karams@uic.edu

Abstract

The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2 syntax and also considers how the neural circuits underlying L2 syntax vary among learners who exhibit different levels of performance on linguistic and cognitive tasks. Results suggest that when exposed to a L2 under an implicit context, some learners are able to quickly rely on neural circuits associated with first language grammar and procedural memory, whereas other learners increasingly use extralinguistic neural circuits related to control mechanisms to process syntax. Thus, there may be multiple ways in which L2 is represented neurally, at least when learned under implicit contexts.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128, 466478.CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. W. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.CrossRefGoogle Scholar
Batterink, L., & Neville, H. J. (2013). Implicit and explicit second language training recruit common neural mechanisms for syntactic processing. Journal of Cognitive Neuroscience, 25, 936951.CrossRefGoogle ScholarPubMed
Bley-Vroman, R. (1989). What is the logical problem of foreign language learning? In Gass, S. M. & Schachter, J. (Eds.), Linguistic perspectives on second language acquisition (pp. 4168). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bley-Vroman, R. (2009). The evolving context of the fundamental difference hypothesis. Studies in Second Language Acquisition, 31, 175198.CrossRefGoogle Scholar
Bowden, H. W., Steinhauer, K., Sanz, C., & Ullman, M. T. (2013). Native-like brain processing of syntax can be attained by university foreign language learners. Neuropsychologia, 51, 24922511.CrossRefGoogle ScholarPubMed
Carpenter, H. S. (2008). A behavioral and electrophysiological investigation of different aptitudes for L2 grammar in learners equated for proficiency level (Unpublished doctoral dissertation). Georgetown University, Washington, DC.Google Scholar
Carpenter, H. S., Morgan-Short, K., & Ullman, M. T. (2009, March). Predicting L2 using declarative and procedural memory assessments: A behavioral and ERP investigation. Paper presented at the Georgetown University Round Table, Washington, DC.Google Scholar
Carroll, J. B., & Sapon, S. M. (1959). Modern language aptitude test: Form A. New York, NY: Psychological Corporation.Google Scholar
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162173.CrossRefGoogle ScholarPubMed
Cutini, S., Scatturin, P., Menon, E., Bisiacchi, P. S., Gamberini, L., Zorzi, M., & Dell’Acqua, R. (2008). Selective activation of the superior frontal gyrus in task-switching: An event-related fNIRS study. NeuroImage, 42, 945955.CrossRefGoogle ScholarPubMed
Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8(2–3), 109114.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
De Diego-Balaguer, R., & Rodriguez-Fornells, A. (2010). Contributions to the functional neuroanatomy of morphosyntactic processing in L2. Language Learning, 60, 231259.CrossRefGoogle Scholar
DeKeyser, R. (2003). Implicit and explicit learning. In Doughty, C. J. & Long, M. H. (Eds.), The handbook of second language acquisition (pp. 313348). Malden, MA: Blackwell.Google Scholar
DeKeyser, R. (2007). Skill acquisition theory. In VanPatten, B. & Williams, J. (Eds.), Theories in second language acquisition: An introduction (pp. 97114). Mahwah, NJ: Erlbaum.Google Scholar
du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S.,... Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain: A Journal of Neurology, 129, 33153328.CrossRefGoogle ScholarPubMed
Filbey, F. M., Russell, T., Morris, R. G., Murray, R. M., & McDonald, C. (2008). Functional magnetic resonance imaging (fMRI) of attention processes in presumed obligate carriers of schizophrenia: Preliminary findings. Annals of General Psychiatry, 7, 113.CrossRefGoogle ScholarPubMed
Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences of the United States of America, 103, 1177811783.CrossRefGoogle ScholarPubMed
Friederici, A. D., Steinhauer, K., & Pfeifer, E. (2002). Brain signatures of artificial language processing: Evidence challenging the critical period hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 529534.CrossRefGoogle ScholarPubMed
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 6781.CrossRefGoogle Scholar
Green, D. W. (2003). Neural basis of the lexicon and the grammar in L2 acquisition. In Hout, R. V., Hulk, A., Kuiken, F., & Towell, R. J. (Eds.), The interface between syntax and the lexicon in second language acquisition (pp. 197208). Amsterdam, the Netherlands: Benjamins.CrossRefGoogle Scholar
Grey, S., Tagarelli, K. M., Turkeltaub, P. E., & Ullman, M. T. (2013, April). The functional neuroanatomy of adult second language: An activation likelihood estimation meta-analysis [Abstract]. Poster presented at the 20th Annual Meeting of the Cognitive Neuroscience Society, San Francisco, CA. Retrieved from http://www.cogneurosociety.org/cns-2013-program/Google Scholar
Hahn, B., Ross, T. J., & Stein, E. A. (2007). Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cerebral Cortex, 17, 16641671.CrossRefGoogle ScholarPubMed
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.Google ScholarPubMed
Indefrey, P. (2006). A meta-analysis of hemodynamic studies on first and second language processing: Which suggested differences can we trust and what do they mean? Language Learning, 56(Suppl. 1), 279304.CrossRefGoogle Scholar
Kaller, C. P., Rahm, B., Köstering, L., & Unterrainer, J. M. (2011). Reviewing the impact of problem structure on planning: A software tool for analyzing tower tasks. Behavioural Brain Research, 216, 18.CrossRefGoogle ScholarPubMed
Kaller, C. P., Unterrainer, J. M., & Stahl, C. (2012). Assessing planning ability with the Tower of London task: Psychometric properties of a structurally balanced problem set. Psychological Assessment, 24, 4653.CrossRefGoogle Scholar
Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman brief intelligence test (2nd ed.). Bloomington, MN: Pearson.Google Scholar
Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain and Language, 109, 6874.CrossRefGoogle ScholarPubMed
Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15, 10281038.CrossRefGoogle ScholarPubMed
Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 1232.CrossRefGoogle ScholarPubMed
Luke, K.-K., Liu, H. L., Wai, Y. Y., Wan, Y. L., & Tan, L. H. (2002). Functional anatomy of syntactic and semantic processing in language comprehension. Human Brain Mapping, 16, 133145.CrossRefGoogle ScholarPubMed
Morgan-Short, K. (2007). A neurolinguistic investigation of late-learned second language knowledge: The effects of explicit and implicit conditions (Unpublished doctoral dissertation). Georgetown University, Washington, DC.Google Scholar
Morgan-Short, K., Faretta-Stutenberg, M., & Bartlett-Hsu, L. (in press). Contributions of event-related potential research to issues in explicit and implicit second language acquisition. In Rebuschat, P. (Ed.), Explicit and implicit learning of languages (1st ed.). Amsterdam, the Netherlands: Benjamins.Google Scholar
Morgan-Short, K., Faretta-Stutenberg, M., Brill-Schuetz, K., Carpenter, H., & Wong, P. C. M. (2014). Declarative and procedural memory as individual differences in second language acquisition. Bilingualism: Language and Cognition, 17, 5672.CrossRefGoogle Scholar
Morgan-Short, K., Finger, I., Grey, S., & Ullman, M. T. (2012). Second language processing shows increased native-like neural responses after months of no exposure. Plos One, 7(3), e32974. doi:10.1371/journal.pone.0032974CrossRefGoogle ScholarPubMed
Morgan-Short, K., Sanz, C., Steinhauer, K., & Ullman, M. T. (2010). Second language acquisition of gender agreement in explicit and implicit training conditions: An event-related potential study. Language Learning, 60, 154193.CrossRefGoogle ScholarPubMed
Morgan-Short, K., Steinhauer, K., Sanz, C., & Ullman, M. T. (2012). Explicit and implicit second language training differentially affect the achievement of native-like brain activation patterns. Journal of Cognitive Neuroscience, 24, 933947.CrossRefGoogle ScholarPubMed
Norris, J. M., & Ortega, L. (2000). Effectiveness of L2 instruction: A research synthesis and quantitative meta-analysis. Language Learning, 50, 417528.CrossRefGoogle Scholar
Opitz, B., & Friederici, A. D. (2003). Interactions of the hippocampal system and the prefrontal cortex in learning language-like rules. NeuroImage, 19, 17301737.CrossRefGoogle ScholarPubMed
Paradis, M. (2004). A neurolinguistic theory of bilingualism. Amsterdam, the Netherlands: Benjamins.CrossRefGoogle Scholar
Paradis, M. (2009). Declarative and procedural determinants of second languages. Philadelphia, PA: Benjamins.CrossRefGoogle Scholar
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15, 202206.CrossRefGoogle ScholarPubMed
Ranganath, C., Johnson, M. K., & D’Esposito, M. (2003). Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia, 41, 378389.CrossRefGoogle ScholarPubMed
Rüschemeyer, S., Fiebach, C. J., Kempe, V., & Friederici, A. D. (2005). Processing lexical semantic and syntactic information in first and second language: fMRI evidence from German and Russian. Human Brain Mapping, 25, 266286.CrossRefGoogle ScholarPubMed
Saur, D., Baumgaertner, A., Moehring, A., Büchel, C., Bonnesen, M., Rose, M.,... Meisel, J. M. (2009). Word order processing in the bilingual brain. Neuropsychologia, 47, 158168.CrossRefGoogle ScholarPubMed
Spada, N., & Tomita, Y. (2010). Interactions between type of instruction and type of language feature: A meta-analysis. Language Learning, 60, 263308.CrossRefGoogle Scholar
Stowe, L. A., & Sabourin, L. (2005). Imaging the processing of a second language: Effects of maturation and proficiency on the neural processes involved. International Review of Applied Linguistics in Language Teaching, 43, 329353.CrossRefGoogle Scholar
Tagarelli, K. M. (2014). The neurocognition of adult second language learning: An fMRI study (Unpublished doctoral dissertation). Georgetown University, Washington, DC.Google Scholar
Tagarelli, K. M., Grey, S., Ullman, M. T., & Turkeltaub, P. E. (2012, August). A comprehensive neuroanatomical meta-analysis of second language functional imaging studies [Abstract]. Poster presented at the 4th Annual Meeting of the Society for the Neurobiology of Language, Donostia-San Sebastián, Spain. Retrieved fromhttp://www.neurolang.org/programs/NLC2012_Abstracts.pdfGoogle Scholar
Tagarelli, K. M., Jiang, X., Shattuck, K. F., Laka, I., Newport, E., & Ullman, M. T. (2014). The neural trajectory of language learning: An fMRI study. Manuscript in preparation.Google Scholar
Tolentino, L. C., & Tokowicz, N. (2011). Across languages, space, and time: A review of the role of cross-language similarity in L2 (morpho)syntactic processing as revealed by fMRI and ERP methods. Studies in Second Language Acquisition, 33, 91125.CrossRefGoogle Scholar
Trahan, D. E., & Larrabee, G. J. (1988). Continuous visual memory test. Odessa, FL: Psychological Assessment Resources.Google Scholar
Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews Neuroscience, 2, 717726.CrossRefGoogle ScholarPubMed
Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92, 231270.CrossRefGoogle ScholarPubMed
Ullman, M. T. (2005). A cognitive neuroscience perspective on second language acquisition: The declarative/procedural model. In Sanz, C. (Ed.), Mind and context in adult second language acquisition (pp. 141178). Washington, DC: Georgetown University Press.Google Scholar
Ullman, M. T. (2014). The declarative/procedural model: A neurobiologically-motivated theory of first and second language. In VanPatten, B. & Williams, J. (Eds.), Theories of second language acquisition: An introduction (2nd ed., pp. 135158). Mahwah, NJ: Erlbaum.Google Scholar
Ullman, M. T., Tagarelli, K. M., Grey, S., & Turkeltaub, P. E. (2014). The functional neuroanatomy of adult second language: An activation likelihood estimation meta-analysis. Manuscript in preparation.Google Scholar
Unterrainer, J., Rahm, B., Leonhart, R., Ruff, C., & Halsband, U. (2003). The Tower of London: The impact of instructions, cueing, and learning on planning abilities. Cognitive Brain Research, 17, 675683.CrossRefGoogle Scholar
Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159170.CrossRefGoogle ScholarPubMed